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Preface

The idea behind derivatives of non-integer orders traces back nearly as far as the
classical derivatives themselves. What began in the 17th century as a puzzling
thought exercise has evolved into one of the most influential mathematical fields of
recent decades, known as fractional calculus. My background in both mathematics
and physics continues to feed my interest in this elegant discipline and its impact
on both theory and applications.

In the realm of applied sciences, fractional calculus has gained recognition for its
linear descriptions of complex systems characterized by nonlocal or memory-based
behaviour, traditionally treated within the nonlinear domain. Theoretically, the
ability to continuously transition between derivative orders reveals previously unseen
connections and enables the study of various phenomena. However, the generalizing
nature of fractional calculus also poses a risk: researchers are tempted to deal with
artificial, easily solvable problems that neither enrich applications nor contribute
much to theory, resulting in mere formalism. With this in mind, I have made it
my goal to focus on key problems that help to shed light on deeper mathematical
principles and behaviour of complex systems.

This habilitation thesis combines the key results of my seven selected papers
[6, 10–13, 15, 37] from 2016-2023. Their unifying theme is the qualitative analysis
of fractional delay differential equations, a class of mathematical models involving
fractional derivatives and time delays representing inherent lags in the system. The
key aim is two-fold: first, to better understand, predict and control the behaviour of
such systems, which is essential for numerous applications ranging from physics and
biology to engineering and finance. Second, to integrate fractional calculus into the
broader landscape of dynamic systems theory, where it can illuminate the intricate
interplay of delayed responses and memory effects in shaping system behaviour.

The thesis comprises four chapters that present the main results and provide
commentary on key proofs referring the respective papers, and seven appendices
containing the full text of the selected published papers. Chapter 1 provides a
context of classical and fractional qualitative analysis and introduces known limit
cases of our study. Chapter 2 summarizes the original results on one-term fractional
delay differential systems. It sets the theoretical foundation for subsequent work
and presents key stability and oscillatory conditions, often in non-improvable form.
Chapter 3 focuses on two-term fractional delay differential equations. It explores
the relationships between derivative order and the stability regions for the system’s
coefficients. Finally, Chapter 4 offers concluding remarks and reflections on this
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Chapter 1

Wider context: classical and
fractional qualitative analysis

The study of dynamic systems involving time delays is a classical area of mathemat-
ical analysis with significant real-world applications. These systems can accurately
model processes that do not respond instantaneously to changes in their state or en-
vironment, such as biological systems, economic models, and engineering processes.
Despite extensive research efforts, many questions related to the stability and con-
trol of these classical systems remain unanswered, primarily due to the inherent
challenges of incorporating delayed responses (see, e.g. [21,22,38]).

Fractional calculus (extending the concepts of differentiation and integration to
non-integer orders) is known for its ability to address the complexities of dynamic
systems with nonlocal and memory effects, such as systems where the future state
depends on a continuum of past states. The corresponding, so-called fractional,
dynamic systems attract a significant attention of scientific community for several
decades (see, e.g. [25,26,32,48,50,53]). Many qualitative results of classical calculus
already found their fractional counterparts (in particular in linear case), many wait
for further progress and many may be impossible to generalize.

The developing interest in fractional calculus among scientists and engineers is
largely due to its applications and further potential in control theory. Thus, the
need to model the fractional systems with delayed feedback with sufficient precision
is growing (see [20,27,49,52]). In particular, since there appears to be a clash of two
forces: while fractional systems of lower orders typically show larger stability regions,
growing delay tends to destabilize the system. That is why this thesis focuses on
the domain connecting fractional derivatives and time delays, on the qualitative
theory of linear fractional delay differential systems (FDDS). Study of FDDS serves,
besides its theoretical value, as a mathematical basis for effective feedback control
of complex systems with memory.

This chapter sets the stage by providing the necessary context. We recall basic
notions of fractional calculus and qualitative theory, present some classical results
serving as comparisons later in the text and outline the basic ideas behind qualitative
analysis.

– 1 –



Chapter 1. Wider context: classical and fractional qualitative analysis 2

1.1 Basic notions
As mentioned above, the subject of this thesis is a study of systems involving frac-
tional derivative. Throughout the text we utilize the following definitions: Let a be
a real number and let f be a real scalar function defined on (a,∞). Its fractional
integral of positive real order γ is given by

D−γ
a f(t) =

∫ t

a

(t− ξ)γ−1

Γ(γ)
f(ξ)dξ, t ∈ (a,∞) .

The (Caputo) fractional derivative of positive real order α is given by

Dα
af(t) = D−(⌈α⌉−α)

a

(
d⌈α⌉

dt⌈α⌉
f(t)

)
, t ∈ (a,∞) (1.1)

where ⌈·⌉ denotes an upper integer part (so-called ceiling function). As it is custom-
ary, we put D0

af(t) = f(t). Besides the Caputo definition (1.1) employed throughout
this thesis, some authors use the Riemann-Liouville derivative applying the frac-
tional integral before the integer-order derivative. We mention this approach only
occasionally for comparison. For more basics of fractional calculus we refer to [32,53].

If f is a vector function, the corresponding fractional operators are considered
component-wise, if f is a complex-valued function, the corresponding fractional
operators are introduced for its real and imaginary part separately.

The terminology that we employ is based on the classical qualitative theory:

• A linear differential system is said to be stable if all its solutions are bounded
as t → ∞.

• A linear differential system is said to be asymptotically stable if all its solutions
tend to zero as t → ∞.

• The set of all parameters’ values for which the differential system is asymp-
totically stable is called the stability region.

• The solution to a differential system is called oscillatory if its set of zeros is
unbounded.

For more precise large-time solution descriptions we use the following asymptotic
notations (K being a suitable positive real):

f ∼ g as t → ∞ ⇐⇒ lim
t→∞

f(t)

Kg(t)
= 1 ,

f ∼sup g as t → ∞ ⇐⇒ lim sup
t→∞

f(t)

Kg(t)
= 1 ,

f = O(g) as t → ∞ ⇐⇒ lim sup
t→∞

|f(t)|
g(t)

< ∞ ,

f = o(g) as t → ∞ ⇐⇒ lim sup
t→∞

f(t)

g(t)
= 0 .

In addition to the asymptotic equivalence ∼, they enable us to describe asymptotics
of a wider class of functions (in particular, unbounded oscillatory functions).
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1.2 Classical results of qualitative analysis
In this section, we summarize the most important results regarding qualitative prop-
erties of fractional differential systems without delay, ordinary delay differential sys-
tems and ordinary differential systems with both delayed and undelayed terms. In
particular, we recall the inequalities defining stability regions for the corresponding
problems. We also provide commentary to other relevant sources expanding these
results.

Fractional differential systems without delay
Let us consider the system

Dα
0y(t) = Ay(t) , t ∈ [0,∞) (1.2)

where A is a constant real d×d matrix and α > 0. The classic stability result comes
from [45] and corresponds to the following assertion.

Theorem 1.1. Let A ∈ Rd×d, α ∈ R+ \ Z+ and let λj (j = 1, 2, . . . , d) be all
eigenvalues of A. Then (1.2) is asymptotically stable if and only if

0 < α < 2 and |Arg (λj)| > απ/2 for all j .

Moreover, any solution y tends to zero algebraically as y ∼ t−α as t → ∞.

Corollary 1.2. The stability region of (1.2) is given by

Sα = {λ ∈ C : |Arg (λ)| > απ/2} , 0 < α < 2 .

Remark 1.3. The proof was given in [45] and the used proving technique enables
to show several other assertions:
a) Originally, only the order less than one was considered, however, the technique
works analogously for higher orders.
b) It was also proven that (1.2) is stable if and only if 0 < α < 2 and |Arg (λj)| ≥
απ/2 for all j and those eigenvalues with the principal argument equaling to ±απ/2
have geometric multiplicity one.
c) Unbounded solutions of (1.2) follow the asymptotic relation y ∼sup t

k exp(λ1/αt)
where k is a suitable nonnegative integer.
d) All solutions of (1.2) tending to zero as t → ∞ are non-oscillatory. For other
solutions, oscillatory property might occur.

Figures 1.1 and 1.2 illustrate the evolution of the stability region Sα for increasing
α. We note that for α → 1 the stability boundary coincides with imaginary axis
and for α → 2− the stability region degenerates into an empty set. That shows
the agreement with the classical theory for both first and second order differential
systems.

In case of the scalar equation, i.e. Dα
0x(t) = λx(t) with λ being real, the asymp-

totic stability and stability occur for λ < 0 and λ ≤ 0, respectively (provided
α ∈ (0, 2)).
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Figure 1.1: Stability region Sα for
(1.2) with α = 0.4 < 1.
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Figure 1.2: Stability region Sα for
(1.2) with α = 1.4 > 1.

First-order delay differential system
Let us consider the system with time delay

y′(t) = Ay(t− τ), t ∈ [0,∞), (1.3)

where A is a constant real d × d matrix and τ > 0 is a constant real lag. Its main
stability and asymptotic properties were derived in, e.g. [23] and can be formulated
as

Theorem 1.4. Let A ∈ Rd×d, τ ∈ R+ and let λj (j = 1, 2, . . . , d) be all eigenvalues
of A. Then (1.3) is asymptotically stable if and only if

τ |λj| < |Arg (λj)| − π/2 for all j .

Moreover, any solution y tends to zero exponentially as t → ∞.

Corollary 1.5. The stability region of (1.3) is given by

Sτ
1 =

{
λ ∈ C : |λ| < |Arg (λ)| − π/2

τ
, |Arg (λ)| > π

2

}
, τ > 0 .

Oscillation properties of (1.3) can be written as follows (see, e.g. [21]).

Theorem 1.6. Let A ∈ Rd×d, τ ∈ R+ and let λj (j = 1, 2, . . . , d) be all eigenvalues
of A. Then all solutions of (1.3) oscillate if and only if

λj ∈ C \ [−1/(τe),∞) for all j ,

i.e. A has no real eigenvalues in [−1/(τe),∞).
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Figure 1.3: Stability region Sτ
1 for

(1.3) depicted for the value τ = 1.
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Figure 1.4: Stability region Sτ
0 for

(1.4), independent of τ .

Figure 1.3 shows the stability region for (1.3), highlighting that in the case of
scalar equation x′(t) = λx(t−τ) with λ being real, the asymptotic stability condition
reduces to −π/(2τ) < λ < 0. Also, in scalar case all solutions oscillate if and only
if λ < −1/(τe).

Discrete system
Let us consider the discrete system

y(n) = Ay(n− τ), t ∈ {τ, 2τ . . . }, (1.4)

where A is a constant real d × d matrix and τ > 0 is a constant real lag. This
system can be viewed as a modification of (1.3) where the derivative is removed (the
derivative order is changed to zero) and the time is discretized into multiples of τ .
It is well-known that the corresponding stability region (see Figure 1.4) is given by
a unit circle with no dependence on the value of τ , i.e.

Sτ
0 = {λ ∈ C : |λ| < 1} , τ > 0 .

First-order differential equation with both delayed and undelayed terms
If an undelayed term is added to the right-hand side of (1.3), we obtain a system

for which the stability analysis is quite difficult even in the planar case. Correspond-
ing necessary and sufficient stability conditions given in terms of system parameters
are known only in very special cases, e.g. if A,B are simultaneously triangularizable.
For more details see [4, 31, 46]. Hence, regarding right-hand side composed of both
delayed and undelayed terms, we will focus on scalar equations.

Let us consider the equation

y′(t) = ay(t) + by(t− τ), t ∈ [0,∞), (1.5)
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where a, b are real and τ > 0 is a constant real lag. Its stability properties can be
written as (see [24])

Theorem 1.7. Let a, b ∈ R, τ ∈ R+. Then (1.5) is asymptotically stable if and
only if either

a ≤ b < −a and τ is arbitrary ,

or
|a|+ b < 0 and τ <

arccos(−a/b)

(b2 − a2)1/2
.

Corollary 1.8. The stability region of (1.5) is given by

Sτ
1 =

{
(a, b) ∈ R2 : a− b ≤ 0 and a+ b < 0

}

∪
{
(a, b) ∈ R2 : |a|+ b < 0 and τ <

arccos(−a/b)

(b2 − a2)1/2

}
.

Figure 1.5 displays the stability region for (1.5) in the (a, b)–plane. The top part
of the stability boundary is formed by the axis of the second and fourth quadrants
corresponding to the first condition in Theorem 1.7. The bottom part of the stability
boundary representing the second condition in Theorem 1.7 depends on τ as also
illustrated by the cusp point coordinates.
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Figure 1.5: Stability region Sτ
1 for

(1.5) depicted for the value τ = 1.
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2  

Figure 1.6: Stability region Sτ
2 for

(1.6) depicted for the value τ = 1.

Second-order differential equation with both delayed and undelayed terms

For better comparison, let us also consider the second-order system

y′′(t) = ay(t) + by(t− τ), t ∈ [0,∞), (1.6)
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where a, b are real and τ > 0 is a constant real lag. Its stability properties can
be derived from [5] (although the case b < 0 was not explicitly discussed there) to
obtain

Theorem 1.9. Let a, b ∈ R, τ ∈ R+ and ℓ ∈ Z+
0 be such that

ℓ2
π2

τ 2
< |a| < (ℓ+ 1)2

π2

τ 2
.

Then (1.6) is asymptotically stable if and only if a < 0 and either

0 < b < min(−ℓ2
π2

τ 2
− a, (ℓ+ 1)2

π2

τ 2
+ a) for ℓ being zero or even,

or

0 > b > max(ℓ2
π2

τ 2
+ a,−(ℓ+ 1)2

π2

τ 2
− a) for ℓ being odd.

Corollary 1.10. The stability region of (1.6) is given by

Sτ
2 =

∞⋃

j=0

({
(a, b) ∈ R2 : 0 < b < min(−(2j)2

π2

τ 2
− a, (2j + 1)2

π2

τ 2
+ a)

}

∪
{
(a, b) ∈ R2 : 0 > b > max((2j + 1)2

π2

τ 2
+ a,−(2j + 2)2

π2

τ 2
− a)

})
.

Comparing Theorems 1.7 and 1.9 we see very different stability conditions for
the first and second-order equations. This difference is demonstrated in Figures 1.5
and 1.6 in the form of quite distinct shapes of the corresponding stability regions.
The transition between them with continuous change of derivative order will be one
of the interest of the following chapters.

1.3 Classical characteristic equation approach
The characteristic equation is central to the stability analysis of linear differential
systems, including those with delays. The usual approach involves substituting
an exponential function with argument st (where s is a complex parameter) as a
candidate solution into the system. This substitution transforms the differential
system into an algebraic equation with s as the variable, such as

det(sI− A exp(−sτ)) = 0 for (1.3) ,
s− a− b exp(−sτ) = 0 for (1.5) ,
s2 − a− b exp(−sτ) = 0 for (1.6) .

Unlike the characteristic equations of ordinary differential equations, which are poly-
nomial in s, these equations are transcendental, leading to more challenges as they
typically have an infinite number of roots.

The system stability is then determined by the location of the characteristic roots
in the complex plane due to the well-known behaviour of exponential functions:
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• If all roots have negative real parts, the system is asymptotically stable.

• If any root has a positive real part, the system is unstable.

• If the rightmost root, i.e. the root with the largest real part, lies on the imag-
inary axis, there might be stability or instability based on root multiplicities.

If entry parameters of the system are specified, the position of characteristic roots
with respect to imaginary axis can be usually analyzed numerically case by case.
However, if we need to design a system or its control, or if there is a risk of parameter
uncertainty, this approach is very random and impractical. Thus, the focal point of
our effort is a reformulation of stability conditions from terms of characteristic roots
into terms of entry parameters.

That is usually done via finding stability boundary in the space of entry pa-
rameters. In other words, we are looking for all combinations of entry parameters
yielding rightmost roots with zero real part. Due to continuous dependence of char-
acteristic roots on entry parameters, we arrive at a hypersurface in the parameter
space where the system transitions from stable to unstable. This approach is of-
ten called D-partition method, D-decomposition method or boundary locus method
(see, e.g. [24,30,39,46,47,54]).

If we consider a system of non-integer order, there is one significant difference: the
exponential functions do not longer solve the system. We need to find an alternative
way to derive the characteristic equation. The well-established practice is to employ
Laplace transform method (for definition we refer to [17]) which leads to the same
results for all the classical problems and is successfully used for fractional differential
systems as well. In particular, for (1.2) it yields the well-known formula

det(sαI− A) = 0

illustrating that characteristic equations belonging to fractional differential problems
typically contain non-analytic functions.

Further, we have to ensure the connection between location of characteristic
roots and stability properties of the system other than the exponential argument
(as exponentials are no longer solutions, see, e.g. [46,53]).

As this thesis deals with problems combining both fractional orders and delays,
the main challenges addressed in the following chapters are:

• Investigating the properties of roots of characteristic equations that are tran-
scendental and non-analytic.

• Identifying efficient descriptions of stability boundaries in various parameter
spaces, clarifying the role of derivative order and delay in shaping the corre-
sponding stability regions.

• Deriving asymptotic expansions of various special functions, often by using
the inverse Laplace transform.



Chapter 2

Analysis of one-term fractional delay
differential systems

This chapter focuses on the stability, oscillatory and related asymptotic properties
derived in author’s papers [6, 10,15,37] for one-term FDDS

Dα
0y(t) = Ay(t− τ), t ∈ (0,∞) (2.1)

where A is a constant real d×d matrix and α, τ > 0 are real scalars. The associated
initial conditions have typically the form

y(t) = ϕ(t), t ∈ [−τ, 0] , (2.2)

lim
t→0+

y(j)(t) = ϕj, j = 0, . . . , ⌈α⌉ − 1 (2.3)

where all components of d-vector function ϕ are absolutely Riemann integrable on
[−τ, 0] and ϕj are constant real d-vectors.

The presence of fractional derivative creates room for discussions regarding the
proper choice of its lower limit a (see (1.1)) which coincides with the "time origin" of
the system. In particular, one might ask why not to put this limit to a = −τ? Similar
issues were discussed as the problem of so-called initialization in [44]. Although this
discussion is quite interesting, no matter the result it does not significantly affect
the qualitative study, because the change of the lower limit is analogous to adding a
forcing term on the right-hand side of (2.1). Hence, we adopt the standard approach
and consider the lower limit of fractional operators to be zero.

The study of qualitative properties of (2.1) was approached by many authors
from different angles. One of the first attempts was [29] dealing with scalar version
of (2.1) with real parameter employing the Lambert function to discuss asymptotic
properties of solutions. Many authors in 2005-2012, e.g. [16,40,54], studied problems
of vector nature, often involving more fractional derivative terms and more time
delays. However, the stability criteria were almost exclusively limited on conditions
for locations of characteristic roots in complex plane without an explicit link to
the entry parameters of the corresponding problem. The difficult practical use and
lack of efficiency of such results were often mentioned by authors themselves (see,

– 9 –
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e.g. [16, 40]). To our knowledge, the first explicit stability criterion was published
for scalar version of (2.1) in 2011 by [39].

With this background, we started our work on [6] in 2014 and managed to de-
rive explicit stability criterion and the asymptotics of bounded solutions for (2.1)
of low orders (less than one). Three years later, in [10], we expanded our scope to
(2.1) of higher orders (greater than one) for which we thoroughly analyzed oscilla-
tory properties which, to our knowledge, were not discussed to that extent in the
literature at the time (see, e.g. [3]). In 2020, we consolidated these results in [37],
providing a comprehensive summary of the stability and asymptotic properties of
(2.1) across all orders. Additionally, we extended our findings to systems involving
another, so-called Riemann-Liouville, fractional derivative requiring a different type
of initial conditions. It was only in 2023, in [15], when we added an easy-to-use
graphical approach to estimate the asymptotic behaviour of unbounded solutions
based on properties of Lambert function.

The key results from these four papers serve as the foundation for the following
sections. As (2.1) transitions into (1.2) when τ → 0, and reduces to (1.3) as α → 1,
this chapter focuses on comparing the properties of (2.1) with its limit counterparts.
In Section 2.1 we establish the structure of solutions to (2.1) and the role of so-called
generalized delay exponentials whose asymptotic properties are analyzed in Section
2.2. Section 2.3 describes the decomposition of complex plane naturally imposed by
characteristic roots with zero real parts. Finally, Sections 2.4 and 2.5 are devoted
to asymptotically stable and unstable systems, respectively, namely to the evolution
of stability conditions, asymptotics and oscillatory properties with changes in the
derivative order α.

2.1 Structure of solutions

Regarding solving of linear fractional equations, the Laplace transform is one of
the most powerful tools. The problem (2.1)-(2.3) is no different. Applying Laplace
transform (see [6,10,37]), we quickly notice the significance of the following notion:

Definition 2.1. Let A ∈ Rd×d, let I be the identity d× d matrix and let α, τ ∈ R+.
The matrix function R : R → Cd×d given by

R(t) = L−1
(
(sαI − A exp{−sτ})−1

)
(t) (2.4)

is called the fundamental matrix solution of (2.1). We note that L−1 denotes the
standard inverse Laplace transform, i.e. L−1(F (s))(t) = (2π i)−1

∫ c+i∞
c−i∞ F (s)estds.

The inverse matrix occurring in (2.4) suggests the well-known characteristic equation
associated to (2.1)

det(sαI − A exp{−sτ}) = 0 , i.e.
n∏

i=1

(sα − λi exp{−sτ})ni = 0 (2.5)
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where λi (i = 1, . . . , n) are distinct eigenvalues of A and ni are their algebraic
multiplicities.

The concept of fundamental matrix solution (for integer orders see, e.g. [22])
yields the following solution representation depending on the initial conditions:

Theorem 2.2. Let A ∈ Rd×d, α, τ ∈ R+ and R be the fundamental matrix solution
of (2.1). Then the solution y of (2.1)–(2.3) is given by

y(t) =

⌈α⌉−1∑

j=0

Dα−j−1
0 R(t)ϕj +

∫ 0

−τ

R(t− τ − u)Aϕ(u)du .

Proof. The assertion follows directly from the evaluation of inverse Laplace trans-
form of (2.1)–(2.3), for details see [6, 37].

To use these findings for qualitative analysis, we have to find more nuanced
description of the solution. Applying the theory of Jordan canonical matrices on
the fundamental matrix solution, we discover a key role of the function introduced
by

Definition 2.3. Let λ ∈ C, η, β, τ ∈ R+ and m ∈ Z+ ∪ {0}. The generalized delay
exponential function (of Mittag-Leffler type) is introduced via

Gλ,τ,m
η,β (t) =

∞∑

j=0

(
m+ j

j

)
λj(t− (m+ j)τ)η(m+j)+β−1

Γ(η(m+ j) + β)
h(t− (m+ j)τ)

where h is the Heaviside step function.

Remark 2.4. We note that special choices of G function parameters yield functions
known to solve special cases of (2.1). Indeed,

• Gλ,0,0
1,1 (t) reduces to classical exponential exp{λt} solving y′(t) = λy(t),

• Gλ,0,0
α,1 (t) coincides with one-parameter Mittag-Leffler function Eα(λt

α) solving
the scalar version of (1.2) (see, e.g. [53]),

• Gλ,τ,0
1,1 (t) is the delay exponential solving the scalar version of (1.3) (see, e.g. [2]).

The Laplace transform of the generalized delay exponential function of Mittag-
Leffler type is

L(Gλ,τ,m
η,β (t))(s) =

sη−β exp{−msτ}
(sη − λ exp{−sτ})m+1

, (2.6)

which allows us to detail the fundamental matrix solution as follows.
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Lemma 2.5. The fundamental matrix solution (2.4) can be expressed as R(t) =
T−1G(t)T , where T is a regular matrix and G is a block diagonal matrix with upper-
triangular blocks Bj given by

Bj(t) =




Gλi,τ,0
α,α (t) Gλi,τ,1

α,α (t) Gλi,τ,2
α,α (t) · · · G

λi,τ,rj−1
α,α (t)

0 Gλi,τ,0
α,α (t) Gλi,τ,1

α,α (t) · · · G
λi,τ,rj−2
α,α (t)

0 0 Gλi,τ,0
α,α (t) · · · G

λi,τ,rj−3
α,α (t)

...
...

... . . . ...
0 0 0 · · · Gλi,τ,0

α,α (t)




,

where j = 1, . . . , J (J ∈ Z+), rj is the size of the corresponding Jordan block of A.

Proof. See [6, 10].

Summarizing the above-stated results, we arrive at the crucial assertion describ-
ing the role of G functions, which serves as foundation for our next analysis.

Theorem 2.6. Let R(t) be the fundamental matrix solution of (2.1). Further, let
λi (i = 1, . . . , n) be distinct eigenvalues of A and let pi be the largest dimension of
the Jordan block corresponding to the eigenvalue λi. Then the nonzero elements of
R(t) are given by linear combinations of the generalized delay exponential functions

Gλi,τ,m
α,α (t), m = 0, . . . , pi − 1, i = 1, . . . , n.

2.2 Asymptotics of generalized delay exponentials
As mentioned in Section 1.3, the known asymptotics of exponential functions is
underlying most of the qualitative analysis of integer-order problems. Analogously,
the asymptotic properties of the generalized delay exponential function of Mittag-
Leffler type (Definition 2.3) prove to be crucial in qualitative analysis of (2.1).

First, let us introduce the real-part ordering for the roots of the denominator in
(2.6) where, for the sake of simplicity, we set η = α (note the link to the characteristic
equation (2.5)). Let sj (j = 1, 2, . . . ) be the roots of

sα − λ exp{−sτ} = 0

with ordering ℜ(sj) ≥ ℜ(sj+1), particularly s1 is called the rightmost root. Then
we can write the foundational asymptotic result as

Lemma 2.7. Let λ ∈ C, α ∈ R+ \ Z+, β, τ ∈ R+, m ∈ Z+
0 and sj be roots of (2.6)

with real-part ordering.
(i) If λ = 0, then

G0,τ,m
α,β (t) =

(t−mτ)mα+β−1

Γ(mα + β)
h(t−mτ).
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(ii) If λ ̸= 0, then

Gλ,τ,m
α,β (t) =

∞∑

j=1

m·kj∑

ℓ=0

ajℓ(t−mτ)ℓ exp{sj(t−mτ)}+ P λ,τ,m
α,β (t) ,

where kj is a multiplicity of sj, ajℓ are suitable nonzero complex constants (ℓ =

0, . . . ,mkj, j = 1, 2, . . . ) and the term P λ,τ,m
α,β has the algebraic asymptotic behaviour

expressed via

P λ,τ,m
α,β (t) =

(−1)m+1

λm+1Γ(β − α)
(t+ τ)β−α−1

+
(−1)m+1(m+ 1)

λm+2Γ(β − 2α)
(t+ 2τ)β−2α−1 +O(tβ−3α−1) as t → ∞.

Proof. For the proof in its complete form see [6], for additional supplementary as-
sertions needed for higher orders see [10].

Its idea is built around evaluation of G for large t through the inverse Laplace
transform

Gλ,τ,m
α,β (t) =

1

2πi

∫

γ(R,π
2
+δ)

sα−β exp{st−msτ}
(sα − λ exp{−sτ})m+1

ds .

The symbol γ (R, π/2 + δ) denotes the specific oriented piecewise smooth curve (see
Figure 2.1) formed by three segments, i.e. γ(µ, θ) = γ1 + γ2 + γ3 where µ > 0,
θ ∈ (0, π] and

γ1 = {s ∈ C : s = −u exp{−iθ}, u ∈ (−∞,−µ)} ,
γ2 = {s ∈ C : s = ζ exp{−iu}, u ∈ [−π − θ, π + θ]} ,
γ3 = {s ∈ C : s = u exp{−iθ}, u ∈ (µ,∞)} .

The proof, apart from its considerable technical difficulty, utilizes several prop-
erties of characteristic roots. In particular, there exists δ > 0 such that all roots
sj of (2.5) satisfy |Arg(si)| ≠ π/2 + δ and, moreover, that there are only finitely
many of them satisfying |Arg(si)| < π/2+ δ. For detail calculations of relevant root
properties, see [6].

Remark 2.8. Notice that Lemma 2.7 focuses on non-integer values of α. The
cases of integer values are already covered by the classical theory and are known
to have exponential asymptotics. From the technical standpoint, the difference lies
in the fact that for non-integer α the Laplace transform of G contains non-analytic
function, while for integer α only analytic functions occur.
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Figure 2.1: The curve γ(µ, θ) used for evaluation of the inverse Laplace
transform in the proof of Lemma 2.7.

2.3 Decomposition of eigenvalues’ complex plane

Lemma 2.7 implies that, similarly to integer-order cases, the characteristic roots
affect the stability properties primarily depending on the sign of their real parts.
Hence, in this section we investigate the relation between locations of system matrix
eigenvalues λ for (2.1) and zero real parts of characteristic roots of (2.5). In par-
ticular, we decompose the complex plane into regions such that eigenvalues chosen
inside these regions guarantee nonzero real parts of the corresponding characteris-
tic roots, and eigenvalues lying on boundaries of these regions imply at least one
characteristic root with the zero real part.

Applying the standard approach of substituting s = iφ (φ ∈ R) into factors of
(2.5), i.e. sα − λ exp{−sτ} = 0, equating real and imaginary parts and rearranging
with respect to |λ| and Arg(λ). After a tedious calculations (see [10]), we can
eliminate the parameter φ and define the regions as follows:

For any α > 0 and m ∈ Z+ such that 0 < α < 4m+ 2:

Qτ
α(m) =

{
λ ∈ C : |λ| <

( |Arg(λ)| − απ
2
+ 2mπ

τ

)α

,

απ

2
− 2mπ < |Arg(λ)| ≤ απ

2
− (2m− 2)π

}

∪
{
λ ∈ C :

( |Arg(λ)| − απ
2
+ (2m− 2)π

τ

)α

< |λ| <
( |Arg(λ)| − απ

2
+ 2mπ

τ

)α

,

|Arg(λ)| > απ

2
− 2mπ

}

where the sets Qτ
α(m) (m ∈ Z+

0 ) are defined to be empty whenever α ≥ 4m+ 2.
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Further, for α ∈ (0, 2) we add:

Qτ
α(0) =

{
λ ∈ C : |λ| <

( |Arg(λ)| − απ/2

τ

)α

, |Arg(λ)| > απ

2

}
.

As illustrated by Figures 2.2-2.5, the sets Qτ
α(m) (m ∈ Z+

0 ) are disjoint and the
infinite union of their closures covers the whole complex plane. In the next two
section we detail the role of these sets in qualitative properties of (2.1).

Q  (0)

Q  (1)

Q  (2)

Q  (3)

ℑ(�)

ℜ(�)

Figure 2.2: Decomposition of eigen-
values’ complex plane for α = 0.4,
τ = 1.

ℜ �

ℑ �

α
τ

  (1)α
τ

  (2)α
τ

  (3)α
τ

  (4)α
τ

Figure 2.3: Decomposition of eigen-
values’ complex plane for α = 1.1,
τ = 1

ℜ �

ℑ �

α
τ

  (2)α
τ

  (3)α
τ

  (4)α
τ

Figure 2.4: Decomposition of eigen-
values’ complex plane for α = 2.1,
τ = 1

Figure 2.5: Decomposition of eigen-
values’ complex plane for α = 3.1,
τ = 1
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2.4 Asymptotically stable systems

The calculations behind the complex plane decomposition from the previous section
yield that the set Qτ

α(0) contains all the eigenvalues having solely characteristic roots
with negative real parts. Thus, it coincides with the stability region for (2.1) which
takes the form

Sτ
α =

{
λ ∈ C : |λ| <

( |Arg(λ)| − απ/2

τ

)α

, |Arg(λ)| > απ

2

}
. (2.7)

That enables us to write a fractional counterpart to Theorem 1.4 and simultaneously
a delay counterpart to Theorem 1.1 as follows

Theorem 2.9. Let A ∈ Rd×d, τ ∈ R+ and α ∈ (0, 2). Then (2.1) is asymptotically
stable if and only if all eigenvalues λi (i = 1, . . . , d) of A are nonzero and satisfy

τ |λi|1/α < |Arg(λi)| − απ/2 .

Moreover, if α /∈ Z+, then the convergence to zero is of algebraic type; more precisely,
for any solution y of (2.1) there exists a suitable integer j ∈ {0, . . . , ⌈α⌉} such that
∥y(t)∥ ∼ tj−α−1 as t → ∞ (the symbol ∥ · ∥ means a norm in Rd).

Proof. The proof is based on Theorems 2.2 and 2.6 combined with Lemma 2.7.
Its main challenge lies in asymptotic evaluation of the integral term

∫ 0

−τ
R(t − τ −

u)Aϕ(u)du. For details see [6, 10,37].

Figures 2.6 and 2.7 illustrate evolution of the stability region for increasing α.
For all α ∈ (0, 1) ∪ (1, 2) the stability boundary has a cusp point at the origin from
which it continues symmetrically above and below real axis with tangents ±απ/2,
respectively. For α = 1, the cusp point smoothens as the tangents align with the
imaginary axis.

Figures 2.8 and 2.9 show the shape of the stability region for α close to integer-
order values one (compare to Figure 1.3) and two (the stability region vanishes).
Figure 2.10 outlines the effect of decreasing τ causing expansion of the stability
region up to the undelayed case for τ → 0+ (compare to Figures 1.1 and 1.2).

The most puzzling insight brought by changing α in (2.1) is depicted in Figure
2.11 where we see shape of stability region for the values α close to zero. Although for
all α > 0 the positive reals lie outside of stability region, we see that the limit shape
for α → 0+ tends to a circle. As shown in Figure 1.4, the circle is the known stability
region for difference equation (1.4) which, in a certain sense, can be seen as (2.1)
with α = 0. This remarkable connection suggests the potential of fractional-order
derivatives to provide transition not just between integer-order differential systems
but also between the differential and difference systems (for more comments see [6]).

The approach originating from Lemma 2.7 and Theorems 2.2 and 2.6 allows to
address also the boundary of stability region.
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Figure 2.6: Stability region Sτ
α for

(2.1) depicted for α = 0.4, τ = 1.
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Figure 2.7: Stability region Sτ
α for

(2.1) depicted for α = 1.1, τ = 1.

Theorem 2.10. Let A ∈ Rd×d, τ ∈ R+ and α ∈ (0, 2). Then (2.1) is stable if and
only if all eigenvalues λ of A belong to Sτ

α or its boundary ∂Sτ
α, and all the ones

lying on the boundary have same algebraic and geometric multiplicities.

Proof. See [6, 37].

Remark 2.11. (i) Comparing Theorems 2.9 and 2.10 we see that while presence of
an eigenvalue on the stability boundary removes asymptotic stability, it preserves
the stability provided it has the same same algebraic and geometric multiplicities.
Consequently, for scalar version of (2.1), the system is stable if and only if all
eigenvalues lie in the closure of Sτ

α (see also [39]).
(ii) Although this thesis deals with fractional derivatives of Caputo type, it is worth
noting that (2.1) with a Riemann-Liouville derivative has nearly the same stability
properties. The only difference occurs when the zero eigenvalue is present as proved
in [37]. Specifically, if α < 1 and the maximum size of any Jordan block associated
with the zero eigenvalue is less than 1/α, the asymptotic stability appears.

Oscillatory properties of asymptotically stable systems

Theorem 1.6 implies that in the case of the first-order delay system (1.3), the oscilla-
tions occur for almost all λ (more precisely, some solutions of (1.3) do not oscillate,
if some eigenvalue lies in [−1/(τe),∞), which is a set of zero measure). In the case
of α ̸= 1, the situation is very different. The following assertion shows that there
are no oscillatory solutions tending to zero.

Theorem 2.12. Let A ∈ Rd×d, α ∈ R+ \ Z+, τ ∈ R+ and let (2.1) be stable. If all
eigenvalues λ of A belong to Sτ

α∪{0}, then all nonzero solutions are non-oscillatory.

Proof. The proof builds on Lemma 2.7 and the fact that in asymptotically stable case
the non-oscillating algebraic term P λ,τ,m

α,β (t) dominates the oscillating exponential
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Figure 2.8: Stability region Sτ
α for

(2.1) depicted for α = 0.9, τ = 1 (the
corresponding limit case α → 1 is dot-
ted).
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Figure 2.9: Stability region Sτ
α for

(2.1) depicted for α = 1.9, τ = 1 (the
corresponding limit case α → 2− is an
empty set).
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Figure 2.10: Stability region Sτ
α for

(2.1) depicted for α = 0.4, τ = 0.1
(the corresponding limit case τ → 0+

is dotted).
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Figure 2.11: Stability region Sτ
α for

(2.1) depicted for α = 0.05, τ = 1
(the corresponding limit case α → 0+

is dotted).

functions. In case of the zero eigenvalue, the additional term is also non-oscillatory
no matter the multiplicity of the zero eigenvalue.
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2.5 Unstable systems
The techniques used in [6] to discuss properties of asymptotically stable systems turn
out to be effective also in the case of unstable system. In particular, they enable us
to describe the supremum asymptotics of the unbounded solutions as follows.

Theorem 2.13. Let A ∈ Rd×d and α, τ ∈ R+. Let λi be all distinct eigenvalues of
A (i = 1, . . . , n) and let (2.1) is not stable. Then solutions y(t) of (2.1) admit three
types of asymptotics:
(i) Let λ1 = 0 be the zero eigenvalue of A with algebraic multiplicity greater than
geometric one and let p1 be the maximal size of Jordan blocks corresponding to λ1.
Further, let λi ∈ Sτ

α for all i = 2, . . . , n. Then

∥y(t)∥ ∼ t(p1−1)α as t → ∞ for any solution y(t) of (2.1).

(ii) Let λi (i = 1, . . . , ℓ ≤ n) be nonzero eigenvalues of A lying on ∂Sτ
α with algebraic

multiplicity greater than geometric one and let pi be the maximal size of Jordan
blocks corresponding to λi (i = 1, . . . , ℓ). Further, let λi ∈ Sτ

α for all i = ℓ+1, . . . , n
provided ℓ < n and p = max(p1, . . . , pℓ). Then

∥y(t)∥ ∼sup t
p−1 as t → ∞ for any solution y(t) of (2.1).

(iii) Let λi (i = 1, . . . , ℓ ≤ n) be eigenvalues of A located outside cl(Sτ
α) and let s1 be

the rightmost root of (2.5). Further, let λj, j ∈ L ⊂ {1, . . . , ℓ} be eigenvalues of A
such that (2.5) with λ = λj has the zero s1 and let p be the maximal size of Jordan
blocks corresponding to λj, j ∈ L. Then

∥y(t)∥ ∼sup t
p−1 exp{ℜ(s1)t} as t → ∞ for any solution y(t) of (2.1).

Proof. The details see in [10].

To obtain an actually effective (and non-improvable) asymptotic result for the
solutions of (2.1), we have to look at the problem inversely. More precisely, for
a given complex λ /∈ Sτ

α, we need to find (nonnegative) real values u, v such that
the rightmost root s1 of (2.5) satisfies ℜ(s1) = u, |ℑ(s1)| = v.

This nontrivial question can be addressed using properties and methods of Lam-
bert function, i.e. the function introduced as a solution of W (z) exp(W (z)) = z,
z ∈ C (see, e.g. [28]). In [15] we developed a framework allowing to evaluate the
precise asymptotic envelop of the unbounded solutions and also the corresponding
asymptotic frequency of oscillations. For the sake of simplicity, only scalar version
of (2.1) with complex coefficient λ was considered. The findings can be summarized
in the following

Theorem 2.14. Let α ∈ (1,∞), τ ∈ R+ and λ ∈ C. If λ /∈ Sτ
α, then, for any

solution y(t) of Dα
0y(t) = λy(t− τ) it holds

y(t) = exp(ut)(c exp(i vt) + o(1)) as t → ∞
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where c is a complex constant, u ≥ 0 is the unique solution of

α arccos

(
u exp(τu/α)

|λ|1/α
)
+

τ
√

|λ|2/α − u2 exp(2τu/α)

exp(τu/α)
= |Arg(λ)| ,

v > 0 is the unique solution of

vα

sinα
(
(|Arg(λ)| − τv)/α

) exp
(
τv cot

(
(|Arg(λ)| − τv)/α

))
= |λ|, if |Arg(λ)| > 0 ,

and v = 0 if Arg(λ) = 0.

Proof. The first and simple part is to express the characteristic roots sk (k ∈ Z) of
(2.5) in terms of Lambert function, i.e.

sk =
α

τ
Wk

( τ
α
λ1/α

)
, k ∈ Z ,

where Wk is the kth branch of the Lambert function. The key part is to prove the
existence of ordering put on Lambert functions branches, namely that ℑ(Wk(z)) ≤
ℑ(Wk+1(z)) for all k ∈ Z and z ̸= 0 and ℜ(W0(z)) ≥ ℜ(Wk(z)) for all k ∈ Z.
The proof is then concluded by technically challenging calculations leading to the
equations for u, v depending on α, τ, λ. For details we refer to [15].

Remark 2.15. (i) Note that Theorem 2.14 is not formulated for α < 1. That is
a consequence of 1/α occurring in the argument of the Lambert function which for
α < 1 might introduce some additional roots which do not actually solve (2.5). This
problem does not seem to be solvable in the framework of Lambert function method
and, to the author’s knowledge, remains open.
(ii) Figure 2.12 depicts a practical "map" allowing us to quickly estimate asymptotic
modulus and oscillation frequency for the solution of Dα

0y(t) = λy(t − τ) based on
location of λ in the complex plane.
(iii) Theorem 2.14 considers only scalar version of (2.1) with complex coefficient. If
we deal with the vector version of (2.1) and the system matrix A has eigenvalues
with the same algebraic and geometric multiplicities, we just have to apply Theorem
2.14 for every eigenvalue and combine the results (Figure 2.12 also applies). In
case of different algebraic and geometric multiplicities, the estimates for asymptotic
frequencies are still valid and the estimates for the modulus have to adjusted by
polynomial multiplication.

Oscillatory properties of unstable systems

As in the stable case, (2.1) (for α ̸= 1) does not have any combination of entry
parameters guaranteeing oscillations of all solutions. On the other hand, there are
combinations that ensure no oscillatory solutions.

Theorem 2.16. Let A ∈ Rd×d, α ∈ R+ \ Z+, τ ∈ R+ and let (2.1) be unstable. If
all eigenvalues λ of A belong to Sτ

α∪{0}∪ (Q1(α, τ)∩R), then all nonzero solutions
are non-oscillatory.



21 Chapter 2. Analysis of one-term fractional delay differential systems

1.25<| (  )|<1.501

(  )=0.251

0.50

0.50

0.25

0.75

0.75

1.00

1.00

1.25

1.50

1.75

2.00

(  )=1.251

(  )<1.0010.75<
-0.25<| (  )|<0.251

(  )<0.7510.50<

Figure 2.12: The blue curves represent the set of all λ ∈ C such that the
rightmost characteristic root s1 of (2.5) satisfies ℑ(s1) = v, and the partic-
ular orange curves represent the set of all λ ∈ C such that the rightmost
characteristic root s1 of (2.5) satisfies |ℜ(s1)| = v (the scenario corresponds
to α = 1.2 and τ = 1). As an example, there are highlighted curvilinear
rectangles representing sets of all λ ∈ C yielding ℜ(s1) and ℑ(s1) from a
certain range.

Proof. The outline of the prove is following, for details we refer to [10].
It can be seen from Lemma 2.7 that oscillatory solutions can occur only if there

is a positive real characteristic root. Further, it is possible to prove that (2.5) has
a positive real root if and only if λ is a positive real and this root is simple, unique
and it is the rightmost root of (2.5).

Then we employ properties of Qτ
α(m) introduced in Section 2.3. In particular,

that there exist just m (m = 0, 1, . . . ) characteristic roots of (2.5) with a positive
real part (while remaining roots have negative real parts) if and only if λ ∈ Qτ

α(m).
Moreover, (2.5) has a root with the zero real part if λ ∈ ∂[Qτ

α(m)] for some m =
0, 1, . . . .

Remark 2.17. Similarly to Theorems 2.12 and 2.16, oscillatory solutions can occur
in some cases only for a particular choice of initial conditions (see [10]).
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Chapter 3

Analysis of two-term fractional delay
differential equations

This chapter summarizes the key findings related to two-term FDDE from author’s
papers [11–13]. Building on our analysis of one-term FDDS, it would seem natural
to turn to

Dα
0y(t) = Ay(t) +By(t− τ) ,

where A,B are real d × d matrices and τ is a positive real time delay. Moreover,
such a mathematical model would provide a large application potential (see, e.g.
[40,43]), especially in control theory regarding stabilization of equilibria of fractional
dynamical systems via delayed feedback controls. Although addition of Ay(t) on the
right-hand side looks quite straightforward, it highly increases the difficulty of the
studied problem. Even the classical case α = 1 is still generally unsolved (see,
e.g. [4, 31,46,55]).

That is why we focus on the proper development of stability theory for the scalar
case, namely two-term fractional delay differential equation (FDDE)

Dα
0y(t) = ay(t) + by(t− τ) , (3.1)

where a, b are real coefficients, τ > 0 is a real lag and α ∈ (0, 2). Similarly as for
(2.1), the associated initial conditions are considered as

y(t) = ϕ(t) , t ∈ [−τ, 0) , (3.2)

lim
t→0+

y(j)(t) = ϕj , j = 0, 1 (3.3)

where ϕ is absolutely Riemann integrable on [−τ, 0) and ϕj are reals.
The topic of stability and asymptotic analysis of FDDEs attracts the attention

of many authors. Before 2016, significant majority of corresponding stability results
was derived as parametric equations or implicit relations for the stability boundary
or usually as an outcome of the D-decomposition method and an appropriate root
locus. For such or similar stability results on (3.1) (with α ∈ (0, 1)) we refer to [1,30],
but the trend is evident from the literature even for simpler cases (see, e.g. [16, 40,

– 23 –
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41, 54]). Hence, we decided to focus on the formulation of explicit stability criteria
for (3.1), as they provide much more accessible and practical tool in comparison to
the usual parametric or implicit ones. In [13] we succeeded for the derivative order
less than one and managed to find the explicit description of stability region in the
(a, b)-plane and the formula for the change from stability to instability with respect
to increasing τ which is present also in the first-order case.

It is well-known that the integer-order linear delay dynamical systems may
change their stability into instability with growing time delay not just once, but
repeatedly back and forth. This interesting phenomenon, often referred to as stabil-
ity switching, is still a current subject of research as exemplified, e.g. by [19,42,47,51]
where values of stability switches are described via parameters of the corresponding
integer-order system. Thus, the occurrence of stability switching for FDDEs is a
natural topic discussed in the second decade of 21st century, e.g. in [56, 57]. Our
papers [11,12] are mostly devoted to this area, the former one considering (3.1) with
imaginary coefficient a and α less than one, and the latter one with α between one
and two. In both the cases we managed to derive explicit values of stability switches
as well as conditions for so-called delay-independent stability. Moreover, [12] clar-
ifies the continuous transition between qualitatively very different stability regions
for (3.1) with α = 1 and α = 2.

The following sections are built on the main results of [11–13]. Section 3.1 elabo-
rates on structure and asymptotics of solutions to (3.1). Then, unlike the Chapter 2,
we focus less on precision of asymptotics and more on shape of stability regions and
their dependence on system parameters. Section 3.2 deals with the case of derivative
order less than one, Section 3.3 changes one of the system parameters from real to
imaginary and Section 3.4 comes back to real (3.1) with order between one and two.
Throughout the chapter, we put stress on the explicit stability conditions which are
quite challenging for (3.1), among other things, because of the presence of stability
switches (see Sections 3.3 and 3.4).

3.1 Structure and asymptotics of solutions

Because (3.1) shares with (2.1) its linearity, fractional derivative order as well as
time delay, the structure of the solution is expected to be similar. The Laplace
transform of (3.1)-(3.3) shows that the fundamental solution belongs to the family
of functions

Ra,b,τ
α,β (t) = L−1

(
sα−β

sα − a− b exp[−sτ ]

)
(t) (3.4)

where α, β, τ > 0 and a, b ∈ R. We can see that the generalized delay exponen-
tial function (with parameter m = 0) introduced by Definition 2.3 in the previous
chapter is the special case of (3.4). Indeed, R0,b,τ

α,β (t) = Gb,τ,0
α,β (t) (see (2.6)).

Using the inverse Laplace transform we arrive at the representation of the solu-
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tion to (3.1)-(3.3) (compare to Theorem 2.2)

y(t) =

⌈α⌉∑

j=0

ϕjRa,b,τ
α,j+1(t) + b

∫ 0

−τ

Ra,b,τ
α,α (t− τ − u)ϕ(u)du . (3.5)

The characteristic equation associated with (3.1) is implied by (3.4) and (3.5) in
the expected form

sα − a− b exp(−sτ) = 0 (3.6)

which has infinitely many complex roots (compare to (2.5) and to characteristic
equations for the classical integer-order cases in Section 1.3).

The key auxiliary assertion, the counterpart to Lemma 2.7, deals with asymptotic
properties of Ra,b,τ

α,β functions.
Lemma 3.1. Let α ∈ (0, 1), β ∈ (0, 1], a, b ∈ R and τ ∈ R+ and let si be roots of
(3.6).
(i) If ℜ(si) < 0 for all si then

Ra,b,τ
α,β (t) ∼ tβ−α−1 for α ̸= β and Ra,b,τ

α,α (t) = O(t−α−1) as t → ∞ .

(ii) If there exists the zero root of (3.6) and ℜ(si) < 0 otherwise, then

Ra,b,τ
α,1 (t) ∼ 1 and Ra,b,τ

α,β (t) = O(tβ−1) for β < 1 as t → ∞ .

(iii) If ℜ(si) ≤ 0 for all si and some of the roots are purely imaginary, then

Ra,b,τ
α,β (t) ∼sup 1 as t → ∞ .

(iv) If ℜ(si) > 0 for some si then

Ra,b,τ
α,β (t) ∼sup (Bt+ C) exp[Mt] as t → ∞

where M = maxsi(ℜ(si)) and reals B,C ≥ 0 are such that B + C > 0.
Proof. The proof utilizes the technique already outlined in the proof of Lemma 2.7,
with much higher technical difficulty, more branching to be considered with respect
to the parameter values and with several adjustments (see [13, pages 344–349]).

The assumptions for the use of the technique needs the root analyses of (3.6),
most importantly showing that for an arbitrary 0 < ω < π, the characteristic
equation has no more than a finite number of roots s such that |Arg(s)| ≤ ω.

Although Lemma 3.1 is formulated for real values of a, b and α less than one, it
is only a technical matter to generalize it. The quality of the asymptotic estimates
may be affected but the stability implications remains the same (as pointed out
in [11,12]).
Theorem 3.2. Let α > 0, τ > 0 and a, b be complex numbers.
(i) If all the roots of (3.6) have negative real parts, then (3.1) is asymptotically
stable.
(ii) If there exists a root of (3.6) with a positive real part, then (3.1) is not stable.
Remark 3.3. Theorem 3.2 does not address the stability boundary. As we will
discuss later, the stability boundary for (3.1) contains points of asymptotic stability,
stability and also instability for various values of system parameters.
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3.2 Stability regions for orders less than one

Let us consider (3.1) with α < 1 and investigate the boundary locus for the cor-
responding (3.6), i.e. the set of all real couples (a, b) such that the characteristic
equation admits a root with zero real part. Substituting s = ± iφ into (3.6) and con-
sidering real and imaginary parts separately yields two qualitatively distinct parts of
boundary locus: the line a+ b = 0 (corresponding to the zero root) and the system
of curves (corresponding to purely imaginary roots)

am(ρ) =
ρα sin(ρ+ απ/2)

τα sin(ρ)
, bm(ρ) = −ρα sin(απ/2)

τα sin(ρ)
, (3.7)

mπ < ρ < (m + 1)π, m = 0, 1, . . . . The curves forming the boundary locus are
depicted in the (a, b)-plane on Figure 3.1 (see also [30] where the authors redundantly
considered multi-valued function sα instead of the single-valued one).

a + b = 0

m = 1

m = 0
m = 2

m = 4

a

b

m = 3

m = 5

Figure 3.1: Boundary locus of (3.1) for α = 0.4, τ = 1.

The necessary link between the boundary locus curves and stability properties
of (3.1) is provided by the following

Theorem 3.4. Let 0 < α < 1, a, b and τ > 0 be real numbers. Then all roots of
(3.6) have negative real parts if and only if the couple (a, b) is an interior point of
the area bounded by the line a+ b = 0 from above and by the parametric curve

a =
ρα sin(ρ+ απ/2)

τα sin(ρ)
, b = −ρα sin(απ/2)

τα sin(ρ)
, ρ ∈ ((1− α)π, π) (3.8)

from below.
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Proof. It follows from continuous dependence of roots of (3.6) on the coefficients a,
b. This property particularly implies that the number of characteristic roots with a
positive real part remains unchanged in all open sets whose boundaries are formed by
the line a+b = 0 or by some curves (3.7). Then it is enough to choose representatives
of these open sets to specify the number of roots of (3.6) with positive real parts
within these sets. For details see [13].

Remark 3.5. Theorem 3.4 implies that of all curves in the system (3.7) only a part
of the curve characterized by m = 0 affects the stability boundary (see Figure 3.2).
Others lie in the region where (3.1) is not stable. Also, substituting (1 − α)π into
(3.8) enables us to calculate the coordinates of the cusp point (see also Figure 3.2).

[ (1 - )]

2   cos( /2)

[ (1 - )]

2   cos( /2)

 

;

b = a - ( / )  cos( /2)

a

b

Figure 3.2: The stability region Sτ
α for (3.1) depicted for α = 0.4 and τ = 1.

The main objective of our effort is to derive explicit conditions determining the
stability region. A related problem has been discussed in [1] where (3.6) is analysed
for a < 0. Here we present the assertion removing the restriction on a and yielding
results in a simpler form due to the use of a different computational technique.

Theorem 3.6. Let 0 < α < 1, a, b and τ > 0 be real numbers. Then (3.1) is
asymptotically stable if and only if it holds either

a ≤ b < −a and τ is arbitrary , (3.9)

or

|a|+ b < 0 and τ < τ ∗ =
(1− α)π/2 + arccos[(−a/b) sin(απ/2)]

[a cos(απ/2) + (b2 − a2 sin2(απ/2))1/2]1/α
. (3.10)
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Proof. The proof is based on rewriting the parametric equations (3.8) into the ex-
plicit ones via intersection analysis of the boundary locus curves, elimination of the
parameter φ and careful operations with inverse trigonometric functions. For details
see [13].

Remark 3.7. (i) Clearly, the stability region Sτ
α consists of pairs (a, b) such that ei-

ther (3.9) or (3.10) holds. The condition (3.9) defines the region of delay-independent
stability. The second condition, (3.10), shows dependence on the time delay, namely
it indicates the one-time loss of stability with increasing τ reaching the value τ ∗.
(ii) The delay-dependent part of stability region expands with decreasing time de-
lay. If we consider the limit τ → 0+, the stability region simplifies into half-plane
a+ b < 0. That agrees with the stability region for the scalar version of (1.2) with
the coefficient a+ b which is the limit of (3.1) for τ → 0+.
(iii) Considering (3.1) with a = 0, we obtain the scalar version of (2.1) with coeffi-
cient b which is asymptotically stable for −(π/τ−απ/(2τ))α < b < 0 (see Figures 2.6
and 2.7). That corresponds to Theorem 3.6 as −(π/τ−απ/(2τ))α is the intersection
between b-axis and the lower branch of the stability boundary.

The following theorem shows that for α less than one, the stability boundary
fully corresponds to the situation when (3.1) is stable but not asymptotically stable.

Theorem 3.8. Let 0 < α < 1, a, b and τ > 0 be real numbers. Then (3.1) is stable,
but not asymptotically stable, if and only if either

a+ b = 0, a ≤ [π(1− α)]α

2τα cos(απ/2)
, (3.11)

or

|a|+ b < 0, τ = τ ∗, τ ∗ being the same expression as in (3.10). (3.12)

Proof. The assertion follows from application of Lemma 3.1, see [13].

Remark 3.9. The stability of (3.1) in the cusp point (the intersection of the line
a + b = 0 and (3.8) is not analogue to the situation known from (1.5). It can be
proved by a direct calculation that (1.5) at the cusp point (i.e. a = −b = 1/τ) is
not stable.

Due to the scalar nature of (3.1) and quite simple form of the stability bound-
ary for of α less than one, we have quite comprehensive asymptotic description of
solutions.

Lemma 3.10. Let 0 < α < 1, a, b and τ > 0 be real numbers and let y be a solution
of (3.1).
(i) Let (3.1) be asymptotically stable. Then

y(t) ∼ t−α or y(t) = O(t−α−1) as t → ∞ .
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(ii) Let (3.1) be stable but not asymptotically stable. If (3.11) is satisfied, then

y(t) ∼ 1 or y(t) = O(tα−1) as t → ∞ .

If (3.12) holds, then

y(t) ∼sup 1 or y(t) = O(1) as t → ∞ .

(iii) Let (3.1) be unstable. Then y(t) = O(t exp[Mt]) as t → ∞, where M =
maxsi(R(si)), si being roots of (3.6). Moreover, there exists a solution y of (3.1)
such that

y(t) ∼sup t exp[Mt] or y(t) ∼sup exp[Mt] as t → ∞ .

Proof. The proof is a consequence of Lemma 3.1 and (3.5). See [13] for details.

Remark 3.11. As usual for asymptotically stable fractional dynamic systems, the
decay rate of the solutions is algebraic, while in the classical case (1.5) it is known
to be exponential.

3.3 Stability regions for orders less than one and an
imaginary coefficient

Let us change the first coefficient of (3.1) into an imaginary one and study the
problem

Dα
0y(t) = i ay(t) + by(t− τ) . (3.13)

Although (3.13) might look artificially constructed, it actually plays a key role in
the stability investigation of a planar fractional delay system

Dα
0x1(t) = ux1(t− τ) + vx2(t)

Dα
0x2(t) = wx1(t) + ux2(t− τ)

with real entries u, v, w (v, w ̸= 0) which was the focus of [11]. We note that the
corresponding classical case (α = 1) was studied by [46] due to its stability switching
nature.

Finding the boundary locus for the characteristic equation associated with (3.13),

sα − i a− b exp(sτ) = 0 , (3.14)

starts in the same manner as in the previous section but soon key differences appear.
First, (3.14) does not admit zero root. Second, purely imaginary roots induce the
system of curves in a form

am(ρ) = ±ρα sin(ρ+ απ/2)

τα cos(ρ)
, bm(ρ) =

ρα cos(απ/2)

τα cos(ρ)
, (3.15)
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0 < ρ < π/2 for m = 0 and mπ − π/2 < ρ < mπ + π/2 for m ∈ Z+ while
ρ+απ/2 ̸= mπ for m ∈ Z+

0 . Even though (3.15) looks formally similar to (3.7), the
description of the stability boundary is now much more complicated as it is formed
by parts of all curves (3.15) requiring calculations of infinitely many intersections.
For the precise procedure we refer to [11] and state the end result:

Let us define two curves

Γ+ =
∞⋃

m=0

Γ2m and Γ− =
∞⋃

m=0

Γ2m+1

composed of the system of curves Γm in the (a, b)-plane given by (3.15) with the
parameter restriction

(2m+ 1− α)π

2
− θ∗m−2 < ρ <

(2m+ 1− α)π

2
+ θ∗m, m ∈ Z+

0

where θ∗m ∈ (0, απ/2) is the unique root of

−sin(θ + απ/2)

sin(θ − απ/2)
=

(
(2m+ 3− α)π

θ + (m+ 1/2− α/2)π
− 1

)α

, m ∈ Z+
0 (3.16)

and θ∗−2 = (α− 1)π/2, θ∗−1 = π/2. Note that in the first relation of (3.15), both the
sign cases have to be considered, and thus any curve Γm has two branches symmetric
with respect to b-axis.

Using this notation we can write

Lemma 3.12. Let 0 < α < 1, τ > 0, a ̸= 0 and b be real numbers. Then (3.13) is
asymptotically stable if and only if the couple (a, b) is located inside the area bounded
by Γ+ from above and by Γ− from below.

Proof. The proof is using the connection between the growth of |b| and number of
characteristic roots with a positive real part, and analysis of intersections among Γm.
Moreover, it employs appropriate asymptotic properties of the functions R± i a,b,τ

α,α ,
R± i a,b,τ

α,1 which, as a by-product, also implies the algebraic decay rate of solutions.
For details see [11].

Remark 3.13. (i) Lemma 3.12 describes parametrically the stability region Sτ
α of

(3.13). Figure 3.3 depicts the known result for α = 1 (see [47]) and Figures 3.4, 3.5
and 3.6 show the evolution of the stability region for decreasing derivative order.
They illustrate that region of delay-independent stability occurs for any α < 1.
(ii) If we consider lines connecting the origin and cusp points of Γ+, we can prove
that they have decreasing tangents with respect to increasing index of a given cusp
point starting closest to b-axis (a similar comment is true also for Γ−). This fact
plays a central role in the context of stability switching.
(iii) Γ+ has the tangent ± cot(απ/2) at the origin. Let us consider a line connecting
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a

b

Figure 3.3: A classical result for the
stability region Sτ

1 with τ = 1.

Γ
+

Γ
-

b

a

Figure 3.4: The stability region Sτ
α for

α = 0.95, τ = 1.

Γ
+

Γ
-

a

b

Figure 3.5: The stability region Sτ
α for

α = 0.6, τ = 1.

Γ
+

Γ
-

a

b

Figure 3.6: The stability region Sτ
α for

α = 0.2, τ = 1.

origin with the first cusp point of Γ+ (i.e. the endpoint of Γ0). It can be calculated
that the tangent of this line is equal to ± cot(απ/2) if and only if α = α∗ where

α∗ ≈ 0.6150768144 . (3.17)

If α > α∗, then for some values of b/a the first stability switch changes instability into
stability. If α < α∗, the first stability switch is always from stability to instability.
For the full calculation we refer to [11].

The shape of the stability boundary for (3.13) is quite complex and its proper
reformulation into the explicit form of stability conditions brings many challenges.
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It seems that the most useful perspective is provided by considering the ratio b/a
as presented in the main result of this section:

Theorem 3.14. Let 0 < α < 1, τ > 0 and a, b be real numbers, let α∗ be given by
(3.17) and let θ∗m ∈ (0, απ/2) be the unique root of (3.16) for m ∈ Z+

0 . Further,
assuming |b|/|a| ≥ cos(απ/2), let n ≥ 0 be an even integer (if b ≥ 0), or an odd
integer (if b < 0), uniquely determined by

cos(απ/2)

cos(θ∗n)
≤ |b|

|a| <
cos(απ/2)

cos(θ∗n−2)
, n ≥ 2 , or

cos(απ/2)

cos(θ∗n)
≤ |b|

|a| , n ∈ {0, 1} .
(3.18)

The zero solution to (3.13) is asymptotically stable if and only if any of the following
conditions holds:

|b|
|a| < cos(απ/2) ; (3.19)

cos(απ/2) ≤ b

|a| < cot(απ/2) and τ ∈
n/2−1⋃

j=−1

(τ ∗2j,−1, τ
∗
2j+2,1) ; (3.20)

α > α∗, cot(απ/2) ≤ b

|a| <
cos(απ/2)

cos(θ∗0)
and τ ∈

n/2−1⋃

j=0

(τ ∗2j,−1, τ
∗
2j+2,1) ; (3.21)

b

|a| ≤ − cos(απ/2) and τ ∈
(n−1)/2−1⋃

j=−1

(τ ∗2j+1,−1, τ
∗
2j+3,1) (3.22)

where τ ∗i,κ = 0 for negative integers i and τ ∗i,κ = τ ∗i,κ(a, b) where i ∈ Z+
0 , κ = ±1 and

τ ∗i,κ(a, b) =
(i+ (1− α)/2) π − κ arccos (|a/b| cos(απ/2))
(
κ
√

b2 − a2 cos2(απ/2) + |a| sin(απ/2)
)1/α

.

Proof. The proof of this theorem requires many preliminary assertions such as guar-
anteeing existence, uniqueness and ordering of θ∗m (m ∈ Z+

0 ), derivation of α∗ and
analysis of the ratio b/a for points belonging to Γ+ and Γ−. In particular, for a
given ratio |b/a|, an analytical description of delays τ such that (a, b) ∈ Γ+∪Γ− has
to be given. For details see [11, pages 7-13].

Remark 3.15. (i) We note that the nonlinear inequalities (3.18) enable us to deter-
mine the exact number of stability switches. For (3.20) then there are n+1 switches
(odd number), for (3.21) there are n switches (even number) and for (3.22) there
are n switches (odd number).
(ii) The condition (3.19) describes the region of delay-independent stability symmet-
ric with respect to both axes. Decreasing α expands this region towards the cone
b = |a| which is the limit case for α → 0+.
(iii) For b/|a| > 0 we can see in Figures 3.8, 3.9 and 3.10 the role of the value α = α∗.
It separates two qualitatively different patterns of stability switching, namely for
α ≤ α∗ it always starts with the first switch changing stability into instability.
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α = 1

τa

b/|a|

Figure 3.7: A classical result for the
stability region Sτ

1 (α = 1) in the
(τa, b/|a|)-plane, see [46].

τ
α
a

b/|a| α > α*

Figure 3.8: The stability region Sτ
α in

the (ταa, b/|a|)-plane for α = 0.8 (i.e.
α > α∗).

τ
α
a

b/|a| α = α*

Figure 3.9: The stability region Sτ
α in

the (ταa, b/|a|)-plane for α = α∗.

τ
α
a

b/|a| α < α*

Figure 3.10: The stability region Sτ
α

in (ταa, b/|a|)-plane for α = 0.4 < α∗.

3.4 Stability regions for orders from one to two

Let us consider (3.1) with α ∈ (1, 2). The boundary locus formulas have the same
form as for the case α ∈ (0, 1), i.e. it is formed by the line a+ b = 0 and the system
of curves Γm in the (a, b)-plane given by (3.7). Properties of these curves for higher
α significantly differ from the case α ∈ (0, 1) and are actually qualitatively more
similar to (3.15) discussed in the previous section.

In [12] it proved to be useful for lucidity, to think of this system of curves from
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two perspectives: their asymptotes and intersections.

Lemma 3.16. Let α ∈ (1, 2), τ ∈ R+ and let Γm = {(a, b) ∈ R2 : a = am(ρ), b =
bm(ρ), ρ ∈ (mπ,mπ + π)} (m = 0, 1 . . . ) be the curves defined by (3.7). Then it
holds:
(i) The line a+ b = 0 is tangent to the curve Γ0 at the origin, and the line

p−0 : b = a−
(π
τ

)α

cos
(απ

2

)

is the asymptote to Γ0 as ρ → π−. Moreover, b0(ρ) < a0(ρ) − (π/τ)α cos(απ/2),
b0(ρ) < 0 and b0(ρ) < −a0(ρ) for all ρ ∈ (0, π).
(ii) If m is a positive odd integer, then Γm has asymptotes p+m (as ρ → mπ+) and
p−m (as ρ → (m+ 1)π−) given by

p+m : b = a−
(mπ

τ

)α

cos
(απ

2

)
and p−m : b = −a+

(
mπ + π

τ

)α

cos
(απ

2

)
.

Moreover, bm(ρ) > 0, bm(ρ) > am(ρ) − (mπ/τ)α cos(απ/2) and bm(ρ) > −am(ρ) +
((mπ + π)/τ)α cos(απ/2) for all ρ ∈ (mπ, (m+ 1)π).
(iii) If m is a positive even integer, then Γm has asymptotes p+m (as ρ → mπ+) and
p−m (as ρ → (m+ 1)π−) given by

p+m : b = −a+
(mπ

τ

)α

cos
(απ

2

)
and p−m : b = a−

(
mπ + π

τ

)α

cos
(απ

2

)
.

Moreover, bm(ρ) < 0, bm(ρ) < −am(ρ) + (mπ/τ)α cos(απ/2) and bm(ρ) < am(ρ) −
((mπ + π)/τ)α cos(απ/2) for all ρ ∈ (mπ, (m+ 1)π).

Proof. The proof is of a technical nature utilizing limits calculations for (3.7). For
details see [12].

Lemma 3.17. Let α ∈ (1, 2), τ ∈ R+ and let et Γm = {(a, b) ∈ R2 : a = am(ρ), b =
bm(ρ), ρ ∈ (mπ,mπ+π)} (m = 0, 1 . . . ) be the curves defined by (3.7). Further, let
Xm,n = (am,n, bm,n) be intersections of Γm and Γn (if they exist). Then it holds:
(i) The intersection (am,n, bm,n) exists (and it is unique) if and only if m,n have the
same parity.
(ii) am,m+2k < 0 for all k ∈ Z such that k > −m/2.
(iii) am,m+2k > am,m+2(k+1) for all k ∈ Z such that k > −m/2.
(iv) am,m+2k > am+2ℓ,m+2k+2ℓ for all k ∈ Z such that k > −m/2 and ℓ = 1, 2 . . . .

Proof. The question of analysing intersections of Γm, Γn is transformed into root
study of an equation involving transcendental expression similar to (3.16). For detail
see [12].

Remark 3.18. (i) Lemma 3.16 says that each curve Γm (m = 0, 1 . . . ) is contained
in an infinite trapezoid consisting of its asymptotes and the a-axis. Each pair Γm,
Γm+1 shares a common asymptote as depicted in Figure 3.11.
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Figure 3.11: The common asymptote
to Γ1 and Γ2 and the corresponding
trapezoids for α = 1.8 and τ = 1.
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Figure 3.12: Some intersections Xm,n

for α = 1.8, τ = 1 and m,n ∈
{0, 1, 2, 3, 4, 5, 6, 7}.

(ii) Figure 3.12 demonstrates the locations and ordering of intersections Xm,n de-
scribed in Lemma 3.17.
(iii) A similar asymptotes and intersections analyses might be useful also in the case
of (3.15), however it was not the point of study in [11].

In order to describe the stability region, we introduce the following notation. Let
P be the line segment

a = −ρ, b = ρ, ρ ∈
(
0,

(3π − απ)α

2τα| cos(απ/2)|

)

and let Γ̃m (m = 0, 1, . . . ) be the parts of Γm with the endpoints Xm,m−2 and Xm,m+2

given by its intersections with the neighbouring curves Γm−2, Γm+2 (see Figure 3.12),
by origin for m = 0 and by the second endpoint of P for m = 1. Further, we put

ΓAS =
∞⋃

m=0

Γ̃m ∪ P .

Using this notation, the geometric description of the stability region is provided by
the following assertion (compare to Theorem 3.4 and Lemma 3.12).

Theorem 3.19. Let α ∈ (1, 2), τ ∈ R+ and a, b ∈ R. Then (3.1) is asymptotically
stable, if the couple (a, b) is located inside the area containing the negative part of
a-axis and bounded by ΓAS.
Moreover, (3.1) is not stable, if (a, b) lies inside the area containing the positive part
of a-axis and bounded by ΓAS.
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Figure 3.13: Stability boundary ΓAS

and stability region Sτ
α of (3.1) for α =

1.8 and τ = 1.
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Figure 3.14: Stability boundary ΓAS

and stability region Sτ
α of (3.1) for α =

1.4 and τ = 1.

Proof. In order to complete this proof, the preconditions similar to the case of
α ∈ (0, 1) have to validated and recalculated (see proofs of Theorem 3.4 and Lemma
2.7). For details we refer to [12] and highlight here only the most interesting partial
results such as:

If (a, b) ∈ Γm (for unique m) and |b| increases, then a new characteristic root
with a positive real part appears.

If a < 0 and b ∈ R, then there exists δ = δ(α, a) > 0 such that all characteristic
roots have negative real parts whenever |b| < δ.

The nonzero characteristic roots depend on a, b continuously.
The case α ∈ (1, 2) stands out mainly due to the need to consider the occurrence

of multiple roots. We proved that a characteristic root has multiplicity greater than
one if and only if either it is zero or there exists an integer k such that αρ − ρ +
τr sin(ρ) = kπ and τr sin(αρ)+α sin(αρ−ρ) = 0. Moreover, any characteristic root
has multiplicity at most three.

Remark 3.20. (i) Although Theorem 3.19 gives only sufficient conditions for asymp-
totic stability, its second part makes them near-optimal. The only additional points
where the stability might occur, lie on the stability boundary given by ΓAS.
(ii) The stability region Sτ

α described in Theorem 3.19 is depicted in Figures 3.13
and 3.14 including a detail of the situation near the origin. Comparing these details
to Figure 1.5 suggests the limit transition for α → 1+, as the rightmost point of Γ1

changes into the cusp point appearing for α ≤ 1.

Our main goal is to obtain the explicit stability conditions, not just a geometric
description of the stability boundary as in Theorem 3.19. In the sequel, we provide
an alternative stability criterion for the case a < 0 that better agrees with the
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form of the conditions of Theorems 1.7 and 1.9. We do not consider the case a > 0
because the corresponding stability conditions are quite straightforward (see Figures
3.13 and 3.14).

Theorem 3.21. Let α ∈ (1, 2), τ > 0, a < 0 and b be real numbers and τ+ℓ , τ−ℓ be
defined as

τ±ℓ =
(ℓ+ 1∓1

2
)π + (2−α)π

2
± arcsin

(∣∣a
b

∣∣ sin(απ
2
)
)

(
a cos(απ

2
)±

√
b2 − a2 sin2(απ

2
)
)1/α

, ℓ ∈ Z+
0 .

(i) If − sin(απ/2) < b/a < sin(απ/2), then (3.1) is asymptotically stable.
(ii) If b/a > sin(απ/2), then there exists an integer N1 ≥ 0 such that (3.1) is asymp-
totically stable for any τ ∈ (τ−2k−2, τ

+
2k), and it is not stable for any τ ∈ (τ+2k, τ

−
2k+2)

where k = 0, . . . , N1 (here we set τ−−2 = 0, τ−2N1+2 = ∞).
(iii) If −1 < b/a < − sin(απ/2), then there exists an integer N2 ≥ 0 such that
(3.1) is asymptotically stable for any τ ∈ (τ−2k−1, τ

+
2k+1), and it is not stable for any

τ ∈ (τ+2k+1, τ
−
2k+3) where k = 0, . . . , N2 (here we set τ−−1 = 0, τ−2N2+3 = ∞).

(iv) If b/a < −1, then (3.1) is not stable.

Proof. See [12].

Remark 3.22. (i) Comparing to Theorems 3.21 and 3.14 we notice two obvious
differences: In the real case (Theorem 3.21), there is no special value α∗ changing
the switching pattern, and the real case is not symmetric with respect to b-axis (see
also Figures 3.13 and 3.14). Theorem 3.21 is formulated without the exact condition
for calculation for the number of stability switches, however these conditions (in form
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Figure 3.15: The stability region in
(b, τ)-plane for α = 1.8 and a = −1.
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Figure 3.16: The stability region in
(b, τ)-plane for α = 2 and a = −1.
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of a system of nonlinear inequalities) were given as a part of an example in [12].
(ii) Figure 3.15 depicts the stability region in the (b, τ)-plane showing clearly the
delay-independent stability region, the stability switching property as well as the
role of τ±j (j ∈ Z+

0 ). Compare it to the Figures 3.8-3.10.

Let us consider α → 2− and compare it to the known results for (1.6). The
asymptotes p+α,m, p−α,m tend to the lines b = −a− (mπ)2/τ 2 and b = a + (mπ)2/τ 2,
which are the lines forming the stability boundary of (1.6) (see Theorem 1.9). Taking
α → 2− in Theorem 3.21, we obtain the limit for the stability region in the form:
0 < |b| < −a and

ℓπ√
−a− |b|

< τ <
(ℓ+ 1)π√
−a+ |b|

where ℓ is a nonnegative integer that is even for b > 0 and odd for b < 0 (see
Figure 3.16). This form of conditions seems to be more effective compared to that
of Theorem 1.9, especially with respect to explicit evaluations of stability switches
for a varying delay parameter.



Chapter 4

Conclusions

In this thesis, we presented an in-depth exploration of the stability, asymptotic
behaviour, and oscillatory properties of several linear fractional differential problems
with a time delay. The focus was placed on optimal or near-optimal nature of
achieved results and on their explicit form in terms of system parameters whenever
possible. The introduced findings extend our understanding of nuances of fractional
and classical dynamics and in many cases they pioneered the qualitative theory of
fractional delay differential problems as outlined below.

We derived optimal stability conditions for the one-term FDDS of an arbitrary
order (2.1), including a comprehensive analysis at the stability boundary (see Theo-
rems 2.9 and 2.10). Rather unconventionally, we also dealt with detailed asymptotic
description of unbounded solutions based on the location of system eigenvalues (see
Theorems 2.13 and 2.14). While stability properties display a smooth transition
across derivative orders, the asymptotic behaviour shows a striking contrast, as
can be expected based on theory of undelayed fractional differential equations. In
asymptotically stable cases, fractional derivatives lead to algebraic decay rates, as
opposed to the exponential decay seen in classical systems. As a consequence, so-
lutions to FDDS tend toward dominantly non-oscillatory behaviour which is a clear
difference from their integer-order counterparts (see Theorem 2.12 and 2.16).

For the two-term FDDE (3.1) of orders less than two, we described the stability
regions and grasped their evolution as the derivative order increases, passing through
classical integer cases (see Theorems 3.4, 3.19). Moreover, we provided several
insights into the emergence mechanism of stability switching phenomenon. Our
particular focus was on providing stability criteria in practical form, i.e. in terms
of entry coefficients, often in non-improvable versions (see Theorems 3.6, 3.14 and
3.21).

These theoretical results naturally transfer to practical applications, particu-
larly to control theory. They outline effective design strategies for stabilization or
destabilization of fractional systems via delayed feedback loops, as well as more nu-
anced prediction of large-time behaviour or such system (see [11,12]). In the future,
we can expect emergence of other applications, e.g. in theory of complex systems
where nonlocal and memory-based nature of fractional derivatives in combination

– 39 –



Chapter 4. Conclusions 40

with time lagging seems to be a promising direction.
Regarding future research, there are several promising directions extending sta-

bility and oscillatory analyses to more general cases. In particular, there are sig-
nificant opportunities in areas where the author already has substantial experience
in the undelayed context, such as discrete settings (see [7, 14, 34]), time-scale cal-
culus (see [18, 33, 36]), nonlinear dynamics and variable coefficients (see [8, 35]), or
problems including multiple fractional operators (see [9]).
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Appendix A

Paper on lower-order one-term
FDDS [6] (CNSNS, 2016)

Until 2016, I had already published nearly a dozen papers on fractional differential
and difference equations. However, it was the paper [6] (co-authors: J. Čermák, J.
Horníček; my author’s share 45 %) that expanded my scope to include equations
involving time delay. To this day, it remains my most cited work across all databases.

We focused on basics which were not sufficiently covered at the time. The sta-
bility and asymptotic properties of autonomous linear FDDS of order less than one.
The main result was the formulation of necessary and sufficient conditions for stabil-
ity via the location of system matrix eigenvalues in complex plane. We also derived
algebraic decay rate of solutions tending to zero.

This paper laid the groundwork for techniques that we later employed for more
advanced and technically challenging problems. Notably, we have re-established
the fundamental solution for FDDS and introduced a generalized delay exponential
function of Mittag-Leffler type. Most importantly, we adopted a technique utilizing
the inverse Laplace transform and root analysis of the characteristic equation to
derive asymptotic behaviour of solutions. This approach proved crucial for our
subsequent research, as the presence of fractional derivatives disallows the direct use
of the link between the real part of characteristic roots and argument of exponentials
(since they do not belong among the solutions of fractional problems).
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Due to licensing restrictions, the full text of [6] is not included in the publicly
accessible part of this habilitation thesis.



Appendix B

Paper on higher-order one-term
FDDS [10] (EJDE, 2019)

We do not find direct technical generalizations of previous papers particularly inter-
esting, which likely led us to postpone the work on higher-order one-term FDDS as
it seemed like a simple follow-up on [6]. However, our hesitation proved unnecessary.
While the stability results were indeed expectedly straightforward generalizations of
our previous findings, [10] (co-author: J. Čermák; my author’s share 50 %) shifted
our focus towards the oscillatory properties - a challenge introduced by higher-order
systems.

In this paper, we conducted a deeper analysis of the locations of characteristic
roots depending on location of eigenvalues. Unlike common practice, we were not
only interested in the case of negative real parts. We detailed the occurrence and
conditions of roots with positive real parts, including their number. That started
our interest in the properties of unbounded solutions, which we revisited also in
subsequent papers.

Ultimately, [10] addresses FDDS of all positive non-integer orders, revealing pre-
dominantly non-oscillatory behaviour. To better discuss the mechanism by which
initial conditions influence the oscillatory and stability properties of the given so-
lution, we introduced the terms major and n-minor solutions. That allowed us to
explore the effects of initial conditions more comprehensively.
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OSCILLATORY AND ASYMPTOTIC PROPERTIES OF

FRACTIONAL DELAY DIFFERENTIAL EQUATIONS

JAN ČERMÁK, TOMÁŠ KISELA

Abstract. This article discusses the oscillatory and asymptotic properties

of a test delay differential system involving a non-integer derivative order.
We formulate corresponding criteria via explicit necessary and sufficient con-

ditions that enable direct comparisons with the results known for classical

integer-order delay differential equations. In particular, we shall observe that
oscillatory behaviour of solutions of delay system with non-integer derivatives

embodies quite different features compared to the classical results known from

the integer-order case.

1. Introduction and preliminaries

Basic qualitative properties of the delay differential equation

y′(t) = Ay(t− τ), t ∈ (0,∞), (1.1)

where A is a constant real d × d matrix and τ > 0 is a constant real lag, are
well described in previous numerous investigations. While stability and asymptotic
properties of (1.1) were reported in [8], answers to various oscillation problems
regarding (1.1) were surveyed in [7].

A crucial role in these investigations was played by the associated characteristic
equation

det(sI −A exp{−sτ}) = 0, (1.2)

where I is the identity matrix. More precisely, appropriate properties of (1.1) were
first described via location of all roots of (1.2) in a specific area of the complex
plane. Then, efficient criteria guaranteeing such root locations were formulated in
terms of conditions imposed directly on the eigenvalues of A.

We recall some of relevant statements (reformulated in the above mentioned
sense) along with their consequences to the scalar case when (1.1) becomes

y′(t) = ay(t− τ), t ∈ (0,∞) (1.3)

where a is a real number. Since we are primarily interested in discussions of oscilla-
tory properties of appropriate fractional extensions of (1.1), we first state (see [7])
oscillation conditions for (1.1) (as it is customary, we say that a solution of (1.1) is
oscillatory if every its component has arbitrarily large zeros; otherwise the solution
is called non-oscillatory).

2010 Mathematics Subject Classification. 34K37, 34A08, 34K11, 34K20.
Key words and phrases. Fractional delay differential equation; oscillation;
asymptotic behaviour.
c©2019 Texas State University.
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Theorem 1.1. Let A ∈ Rd×d and τ ∈ R+. Then the following statements are
equivalent:

(a) All solutions of (1.1) oscillate;
(b) The characteristic equation (1.2) has no real roots;
(c) A has no real eigenvalues in [−1/(τe),∞).

Corollary 1.2. Let a ∈ R and τ ∈ R+. All solutions of (1.3) oscillate if and only
if

a < − 1

τe
.

As we shall see later, oscillatory properties of the corresponding fractional delay
system are closely related to convergence of all its solutions to the zero solution. In
the first-order case (1.1), this property was characterized in [8] via

Theorem 1.3. Let A ∈ Rd×d and τ ∈ R+. Then the following statements are
equivalent:

(a) Any solution y of (1.1) tends to zero as t→∞;
(b) The characteristic equation (1.2) has all roots with negative real parts;
(c) All eigenvalues λi (i = 1, . . . , d) of A satisfy

τ |λi| < | arg(λi)| − π/2 .
Moreover, the convergence of y to zero is of exponential type.

Remark 1.4. The condition (c) can be equivalently expressed via the requirement
that all eigenvalues λi (i = 1, . . . , d) of A have to be located inside the region
bounded by the curve

<(λ) = ω cos(ωτ), =(λ) = −ω sin(ωτ), − π

2τ
≤ ω ≤ π

2τ

in the complex plane.

Corollary 1.5. Let a ∈ R and τ ∈ R+. Any solution y of (1.3) tends to zero as
t→∞ if and only if

− π

2τ
< a < 0 .

Extensions of previous results to the n-th order equation (n is a positive integer)

y(n)(t) = Ay(t− τ), t ∈ (0,∞) (1.4)

yield different conclusions. In this case, the characteristic equation becomes

det(snI −A exp{−sτ}) = 0 . (1.5)

If n ≥ 2, then there is no analogue to Theorem 1.3. More precisely, the convergence
of all solutions of (1.4) to zero is not possible whenever n ≥ 2 (see, e.g. [6]).
Regarding oscillatory properties of (1.4), equivalency of conditions (a) and (b) (with
(1.2) replaced by (1.5)) of Theorem 1.1 remains preserved, but their conversion into
an explicit form depends on parity of n (see [7]).

The main goal of this article is to discuss these oscillatory and related asymptotic
properties of (1.1) with respect to their possible extension to the fractional delay
differential equation

Dα
0 y(t) = Ay(t− τ), t ∈ (0,∞) (1.6)
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where α > 0 is a real scalar and the symbol Dα
0 is the Caputo derivative of order

α introduced in the following way: First let y be a real scalar function defined on
(0,∞). For a positive real γ, the fractional integral of y is given by

D−γ0 y(t) =

∫ t

0

(t− ξ)γ−1

Γ(γ)
y(ξ)dξ, t ∈ (0,∞)

and, for a positive real α, the Caputo fractional derivative of y is given by

Dα
0 y(t) = D

−(dαe−α)
0

( ddαe

dtdαe
y(t)

)
, t ∈ (0,∞)

where d·e means the upper integer part. As it is customary, we put D0
0y(t) = y(t)

(for more on fractional calculus, see, e.g. [10, 15]). If y is a real vector function, the
corresponding fractional operators are considered component-wise (similarly, if y
is a complex-valued function, then these fractional operators are introduced for its
real and imaginary part separately). We add that the initial conditions associated
to (1.6) are

y(t) = φ(t), t ∈ [−τ, 0] , (1.7)

lim
t→0+

y(j)(t) = φj , j = 0, . . . , dαe − 1 (1.8)

where all components of φ are absolutely Riemann integrable on [−τ, 0] and φj are
real scalars. In the frame of our oscillatory and asymptotic discussions on (1.6), we
are going not only to extend previous results to (1.6) but also discuss a dependence
of relevant conditions on changing derivative order α (with a special attention to
the case when α is crossing integer values).

The structure of this paper is following: Section 2 recalls some related special
functions as well as the characteristic equation associated with (1.6). Some asymp-
totic expansions of the studied special functions are described as well. In Section
3, we discuss in detail distribution of roots of the characteristic equation in specific
areas of the complex plane. Using these auxiliary statements, Sections 4 and 5 for-
mulate a series of results describing oscillation and asymptotic properties of (1.6)
in the vector and scalar case. More precisely, Section 4 presents analogues of The-
orems 1.1 and 1.3, and Section 5 contains some additional oscillation results in the
scalar case. Discussions on non-consistency of the obtained results with the above
recalled classical properties of (1.1) and (1.3) are subject of Section 6 concluding
the paper.

2. Special functions and their properties

In this section, we recall and extend some notions and formulae introduced in
[3] in the frame of stability analysis of (1.6) with 0 < α < 1. As we shall see
later, these tools turn out to be very useful also in oscillatory investigations of (1.6)
with arbitrary real α > 0. Since the proofs of auxiliary statements stated below
are (essentially) analogous to the proofs of appropriate assertions from [3], we omit
them.

In the sequel, the symbols L and L−1 denote the Laplace transform and inverse
Laplace transform of appropriate functions, respectively.

Definition 2.1. Let A ∈ Rd×d, let I be the identity d×d matrix and let α, τ ∈ R+.
The matrix function R : R→ Cd×d given by

R(t) = L−1
(
(sαI −A exp{−sτ})−1

)
(t) (2.1)
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is called the fundamental matrix solution of (1.6).

Theorem 2.2. Let A ∈ Rd×d, α, τ ∈ R+ and let R be the fundamental matrix
solution of (1.6). Then the solution y of (1.6)–(1.8) is given by

y(t) =

dαe−1∑

j=0

Dα−j−1
0 R(t)φj +

∫ 0

−τ
R(t− τ − u)Aφ(u)du.

Remark 2.3. Theorem 2.2 along with Definition 2.1 imply that the poles of the
Laplace image of solution of (1.6) coincide with roots of

det(sαI −A exp{−sτ}) = 0, equivalently

n∏

i=1

(sα − λi exp{−sτ})ni = 0 , (2.2)

where λi (i = 1, . . . , n) are distinct eigenvalues of A and ni are their algebraic
multiplicities. This confirms the well-known fact that (2.2) is the characteristic
equation associated to (1.6) (see, e.g. [5, 9, 11]).

The following notion of a generalized delay exponential function plays an im-
portant role in description of asymptotic expansions of the fundamental matrix
solution of (1.6).

Definition 2.4. Let λ ∈ C, η, β, τ ∈ R+ and m ∈ Z+ ∪{0}. The generalized delay
exponential function (of Mittag-Leffler type) is introduced via

Gλ,τ,mη,β (t) =

∞∑

j=0

(
m+ j

j

)
λj(t− (m+ j)τ)η(m+j)+β−1

Γ(η(m+ j) + β)
h(t− (m+ j)τ)

where h is the Heaviside step function.

The relationship between the fundamental matrix solution R and the generalized

delay exponential functions Gλ,τ,mη,β can be specified via the following lemma.

Lemma 2.5. The fundamental matrix solution (2.1) can be expressed as R(t) =
T−1G(t)T , where T is a regular matrix and G is a block diagonal matrix with upper-
triangular blocks Bj given by

Bj(t) =




Gλi,τ,0
α,α (t) Gλi,τ,1

α,α (t) Gλi,τ,2
α,α (t) · · · G

λi,τ,rj−1
α,α (t)

0 Gλi,τ,0
α,α (t) Gλi,τ,1

α,α (t) · · · G
λi,τ,rj−2
α,α (t)

0 0 Gλi,τ,0
α,α (t) · · · G

λi,τ,rj−3
α,α (t)

...
...

...
. . .

...
0 0 0 · · · Gλi,τ,0

α,α (t)



,

where j = 1, . . . , J (J ∈ Z+) and rj is the size of the corresponding Jordan block of
A.

As a next key auxiliary result, we describe asymptotic behaviour of Gλ,τ,mη,β func-
tions.

Lemma 2.6. Let λ ∈ C, α ∈ R+ \ Z+, β, τ ∈ R+ and m ∈ Z+ ∪ {0}. Further, let
si (i = 1, 2, . . . ) be the roots of

sα − λ exp{−sτ} = 0 (2.3)

with ordering <(si) ≥ <(si+1) (i = 1, 2, . . . ; in particular, s1 is the rightmost root).
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(i) If λ = 0, then

G0,τ,m
α,β (t) =

(t−mτ)mα+β−1

Γ(mα+ β)
h(t−mτ).

(ii) If λ 6= 0, then

Gλ,τ,mα,β (t) =
∞∑

i=1

m·ki∑

j=0

aij(t−mτ)j exp{si(t−mτ)}+ Sλ,τ,mα,β (t) ,

where ki is a multiplicity of si, aij are suitable nonzero complex constants

(j = 0, . . . ,mki, i = 1, 2, . . . ) and the term Sλ,τ,mα,β has the algebraic asymp-
totic behaviour expressed via

Sλ,τ,mα,β (t) =
(−1)m+1

λm+1Γ(β − α)
(t+ τ)β−α−1

+
(−1)m+1(m+ 1)

λm+2Γ(β − 2α)
(t+ 2τ)β−2α−1 +O(tβ−3α−1) as t→∞.

3. Distribution of characteristic roots

The aim of this section is to analyse (2.2) with respect to existence of its real
roots as well as number of its roots with positive real parts. Doing this, it is enough
to consider its partial form (2.3).

First, we characterize the set of all roots of (2.3) in terms of their magnitudes
and arguments (we assume here λ 6= 0, i.e. s 6= 0). Using the goniometric forms of
s and λ we obtain that (2.3) is equivalent to

|s|α cos[α arg(s)]− |λ| exp{−|s|τ cos[arg(s)]} cos[arg(λ)− |s|τ sin(arg(s))]

= 0,
(3.1)

|s|α sin[α arg(s)]− |λ| exp{−|s|τ cos[arg(s)]} sin[arg(λ)− |s|τ sin(arg(s))]

= 0.
(3.2)

To solve (2.3), we consider (3.1)–(3.2) as a system with unknowns |s| and arg(s).
If α arg(s) = `1π for some integer `1, then arg(λ) − |s|τ sin[arg(s)] = `2π for some
integer `2 and (3.1) yields

|s|α(−1)`1 − |λ| exp{−|s|τ cos[arg(s)]}(−1)`2 = 0,

i.e.
|s|α = (−1)`|λ| exp{−|s|τ cos[arg(s)]} = 0 for some integer `. (3.3)

Thus (3.1)–(3.2) can be reduced to

α arg(s)− arg(λ)− |s|τ sin[arg(s)] = 2kπ for some integer k, (3.4)

|s|α = |λ| exp{−|s|τ cos[arg(s)]}. (3.5)

If α arg(s) 6= `1π for any integer `1, then arg(λ) − |s|τ sin[arg(s)] 6= `2π for any
integer `2 and division (3.1) over (3.2) yields

α arg(s) = |λ| exp{−|s|τ cos[arg(s)]}+ `π for some integer `.

This, after substitution into (3.1), yields (3.3). Now, the same argumentation as
above shows equivalency of (2.3) and (3.4)–(3.5).

Using the previous process, we can derive the following characterization of pos-
sible real roots of (2.3).
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Proposition 3.1. Let λ ∈ C and α, τ ∈ R+.

(i) The characteristic equation (2.3) has a positive real root if and only if λ is
a positive real. This root is simple, unique and it is the rightmost root of
(2.3).

(ii) The characteristic equation (2.3) has a negative real root if and only if

0 < |λ| ≤ (
α

τe
)α and arg(λ) = (α− 2k)π for some k ∈ Z .

More precisely, if

0 < |λ| = (
α

τe
)α and arg(λ) = (α− 2k)π for some k ∈ Z ,

then s1,2 = −α/τ is double and the rightmost root of (2.3) (remaining roots
of (2.3) are not real). If

0 < |λ| <
( α
τe

)α
and arg(λ) = (α− 2k)π for some k ∈ Z ,

then (2.3) has a couple of simple real negative roots, the greater of them
being rightmost (remaining roots of (2.3) are not real).

(iii) The characteristic equation (2.3) has the zero root if and only if λ = 0.

Furthermore, using (3.4)–(3.5) we can specify the distribution of characteristic
roots of (2.3) with respect to the imaginary axis. Before doing this, we introduce
the following areas in the complex plane.

For real parameters 0 < α < 2 and τ > 0, we define the set Q0(α, τ) of all
complex λ such that

| arg(λ)| > απ

2
and |λ| <

( | arg(λ)| − απ
2

τ

)α
.

Further, for any positive integer m and real parameters 0 < α < 4m+ 2 and τ > 0,
we define the sets Qm(α, τ) of all complex λ such that either

απ

2
− 2mπ < | arg(λ)| ≤ απ

2
− (2m− 2)π and |λ| <

( | arg(λ)| − απ
2 + 2mπ

τ

)α
,

or | arg(λ)| > απ
2 − 2mπ and

( | arg(λ)| − απ
2 + (2m− 2)π

τ

)α
< |λ| <

( | arg(λ)| − απ
2 + 2mπ

τ

)α
.

We add that the sets Qm(α, τ) (m = 0, 1, . . . ) are defined to be empty whenever
α ≥ 4m+ 2.

Now, we can describe the location of the roots of (2.3) with respect to the
imaginary axis in terms of the sets Qm(α, τ) (we utilize here the standard notation
∂[Qm(α, τ)] for their boundaries).

Proposition 3.2. Let λ ∈ C and α, τ ∈ R+. Then there exist just m (m = 0, 1, . . . )
characteristic roots of (2.3) with a positive real part (while remaining roots have
negative real parts) if and only if λ ∈ Qm(α, τ). Moreover, (2.3) has a root with the
zero real part if λ ∈ ∂[Qm(α, τ)] for some m = 0, 1, . . . .

The appropriate regions Qm(α, τ) are depicted in Figures 1 and 2.
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Im(λ)

Re(λ)

Q (α,τ)0

Q (α,τ)1

Q (α,τ)2

Q (α,τ)3

Im(λ)

Re(λ)

Q (α,τ)2

Q (α,τ)3

Q (α,τ)0

Q (α,τ)1

Q (α,τ)4

Figure 1. α = 0.4 and τ = 1 (left). α = 1.1 and τ = 1 (right)

Im(λ)

Re(λ)

Q (α,τ)3

Q (α,τ)2

Q (α,τ)1

Q (α,τ)4

Im(λ)

Im(λ)

Re(λ)

Re(λ)

Q (α,τ)1

Q (α,τ)3

Q (α,τ)2

Q (α,τ)4

Figure 2. α = 2.1 and τ = 1 (left). α = 3.1 and τ = 1 (right)

Proof. We start with the proof of Proposition 3.1 and consider the characterization
of roots s of (2.3) via (3.4)–(3.5). Obviously, (2.3) has a positive real root if
arg(λ) = 0 (i.e. λ is a positive real). In this case, the characteristic function

F (s) = sα − λ exp{−sτ}
is strictly increasing for all s ≥ 0 with F (0) = −λ < 0 and F (∞) = ∞, hence
there is a unique positive real root s1 of (2.3). To show its dominance, we consider
remaining roots si of (2.3) with a positive real parameter λ. Then (3.5) yields

(s1)α = λ exp{−s1τ}, |si|α = λ exp{−|si|τ cos[arg(si)]}.
From here, we obtain

( s1

|si|
)α

= exp{(−s1 + |si| cos[arg(si)])τ} . (3.6)
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Assume that s1 is not the rightmost root of (2.3), i.e. |si| cos[arg(si)] ≥ s1 for some
root si of (2.3). Then

s1

|si|
< 1 and exp{(−s1 + |si| cos[arg(si)])τ} ≥ 1

which contradicts (3.6). This proves Proposition 3.1(i).
Similarly, (3.4)–(3.5) imply that (2.3) has a negative real root s if and only if

arg(λ) = (α− 2k)π for some k ∈ Z
and

|s|α = |λ| exp{|s|τ}.
Put r = |s| and G(r) = rα − |λ| exp{rτ}, r ≥ 0. Then G(0) = −|λ| < 0, G(∞) =
−∞ and G is increasing in (0, r∗) and decreasing in (r∗,∞) for a suitable r∗ > 0.
Thus G has (one or two) positive roots if and only if G(r∗) ≥ 0. In particular, G
has a unique positive root r∗ if and only if G(r∗) = G′(r∗) = 0, i.e.

(r∗)α − |λ| exp{r∗τ} = α(r∗)α−1 − |λ|τ exp{r∗τ} = 0 .

From here, we obtain

r∗ =
α

τ
and |λ| =

( α
τe

)α
.

Obviously, if

|λ| <
( α
τe

)α
,

then G has two real positive roots r1 < r2. We show that s1 = −r1 is the rightmost
root of (2.3), i.e s1 > |si| cos[arg(si)] for all remaining roots si (i = 2, 3, . . . ) of
(2.3). Indeed, by (3.5),

|s1|α = |λ| exp{|s1|τ} and |si|α = |λ| exp{−|si|τ cos[arg(si)]} .
Then |s1| < |si|, i.e. |s1| + |si| cos[arg(si)] < 0. Analogously we can show the
dominance of a double real root s1,2 (if exists). This proves Proposition 3.1 (ii).
The assertion of Proposition 3.1(iii) is trivial.

Now, we show the validity of Proposition 3.2. Since the case of real characteristic
roots of (2.3) has been discussed previously, we first search the roots s with 0 <
arg(s) ≤ π/2. Then (3.4)–(3.5) can be reduced to

|s| = arg(λ)− α arg(s) + 2kπ

τ sin[arg(s)]
, (3.7)

(arg(λ)− α arg(s) + 2kπ

τ sin[arg(s)]

)α
− |λ| exp

{
(− arg(λ)

+ α arg(s)− 2kπ) cotan[arg(s)]
}

= 0 .

(3.8)

We denote the left-hand side of (3.8) by Hk = Hk(arg(s)). Then

Hk(0+) =∞, Hk(π/2) =
(arg(λ)− απ/2 + 2kπ

τ

)α
− |λ|

and Hk(arg(s)) decreases as arg(s) increases from 0 to π/2. This implies that (3.7)–
(3.8) has just m couples of solutions with |s| > 0 and 0 < arg(s) ≤ π/2 if and only
if either

απ

2
− 2mπ < arg(λ) ≤ απ

2
− (2m− 2)π and Hm(π/2) > 0 ,

or
arg(λ) >

απ

2
− 2mπ and Hm(π/2) > 0 > Hm−1(π/2) .
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If −π/2 ≤ arg(s) < 0, then we obtain the same conclusion with arg(λ) replaced by
− arg(λ). This implies the main part of the assertion. The supplement on existence
of purely imaginary roots of (2.3) follows from continuous dependence of roots s on
parameter λ. Alternatively, it can be obtained via the standard D-decomposition
method. �

4. Main results

In this section, we derive and formulate fractional-order analogues to Theorems
1.1 and 1.3.

Theorem 4.1. Let A ∈ Rd×d, α ∈ R+ \ Z+ and τ ∈ R+. Then the following
statements are equivalent:

(a) All non-trivial solutions of (1.6) are non-oscillatory;
(b) The characteristic equation (2.2) admits only real roots or roots with a

negative real part;
(c) A has all eigenvalues lying in Q0(α, τ) ∪ (Q1(α, τ) ∩ R) ∪ {0}.

Proof. Theorem 2.2 and Lemma 2.5 imply that every solution of (1.6)–(1.8) can be
expressed as

y(t) = T−1

dαe−1∑

j=0

Dα−j−1
0 G(t)Tφj + T−1

∫ 0

−τ
G(t− τ − u)JTφ(u)du , (4.1)

where G is a matrix function introduced in Lemma 2.5, J is a Jordan form of
the system matrix A and T is the corresponding regular projection matrix, i.e.
A = TJT−1. Employing (4.1) and Lemma 2.5, we can see that every component
of y is a linear combination of terms derived from elements of G. We distinguish
two cases with respect to (non)zeroness of eigenvalues λi of A.

First, let λi 6= 0 for all i = 1, . . . , n (n being the number of distinct eigenvalues

of A). Then the elements of matrices Dα−j−1
0 G(t) (j = 0, . . . , dαe − 1) can be

asymptotically expanded via the relation

Dα−j−1
0 Gλi,τ,m

α,α (t) = Gλi,τ,m
α,j+1 (t)

=
N∑

w=1

mkw∑

`=0

t` exp{swt}bw,`
(
1− mτ

t

)`
exp{−swmτ}

+ tj−α
(−1)m+1(1 + τ/t)j−α

λm+1
i Γ(j − α+ 1)

+O(tj−2α) as t→∞ ,

(4.2)

where sw (w = 1, 2, . . . , N) are roots of (2.3) with the largest real parts ordered as
<(sw) ≥ <(sw+1), N is any positive integer satisfying <(sN ) < 0, kw is multiplicity
of sw and bw,` are suitable real constants (see ai,j in Lemma 2.6(ii)). Similarly, the
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elements of the matrix
∫ 0

−τ G(t− τ − u)JTφ(u)du have the expansions
∫ 0

−τ
Gλi,τ,m
α,α (t− τ − u)φ̂p(u)du

=
N∑

w=1

mkw∑

`=0

t` exp{swt}cw,`λi
∫ 0

−τ

(
1− (m+ 1)τ

t
− u

t

)`
e−sw((m+1)τ+u)φ̂p(u)du

+ t−α−1

∫ 0

−τ

(−1)m+1(m+ 1)(1 + τ/t− u/t)−α−1

λm+1
i Γ(−α)

φ̂p(u)du+O(t−2α−1)

(4.3)

as t → ∞, where φ̂p(u) is pth row of the vector JTφ(u) and cw,` are suitable real
constants (see ai,j in Lemma 2.6(ii)).

If λi = 0 for some i = 1, . . . , n, then the appropriate analogues of (4.2)–(4.3)
involve only algebraic terms (see Lemma 2.6(i)). Now, we can prove the presented
equivalencies:

(a)⇔(b): The property (a) holds if and only if, for any choice of φ, the dominat-
ing terms involved in (4.2) and (4.3) are non-oscillatory. We can see that all the
algebraic terms from (4.2) and (4.3) are non-oscillatory and eventually dominating
with respect to all exponential terms with negative real parts of their arguments.
Contrary, an exponential term is eventually dominating provided its argument has
a non-negative real part. Clearly, if such a case does occur, the solution y of (1.6) is
non-oscillatory only if the imaginary parts of the corresponding arguments are zero.
By (4.2) and (4.3), the discussed arguments of the exponential terms are expressed
via roots of (2.2), which yields equivalency of (a) and (b).

(b)⇔(c): This equivalency follows immediately from Propositions 3.1 and 3.2. �
In the scalar case, when (1.6) becomes

Dα
0 y(t) = ay(t− τ), t ∈ (0,∞) , (4.4)

a being a real scalar, we obtain the following explicit characterization of non-
existence of a non-trivial oscillatory solution.

Corollary 4.2. Let a ∈ R, α ∈ R+ \ Z+ and τ ∈ R+. All non-trivial solutions y
of (4.4) are non-oscillatory if and only if

0 < α < 2 and −
( (2− α)π

2τ

)α
< a <

( (4− α)π

2τ

)α
,

or

2 < α < 4 and 0 < a <
( (4− α)π

2τ

)α
.

Remark 4.3. In the first-order case, the value a = −1/(τe) is of a particular impor-
tance: crossing this value, the (negative) real roots of the associated characteristic
equation disappear and all solutions of (1.3) become oscillatory for a < −1/(τe).
In the fractional-order case, the (negative) real roots disappear for a < −(α/(τe))α.
However, such roots have no impact on oscillatory behaviour of the solutions of (4.4)
because the exponential terms with negative arguments involved in the formulae
(4.1)–(4.3) are eventually suppressed by algebraic terms.

By Theorem 4.1, if all roots of (2.2) have negative real parts, then all non-trivial
solutions of (1.6) are non-oscillatory. Therefore, we give an explicit characterization
of this assumption and thus provide a fractional-order analogue to Theorem 1.3.
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Theorem 4.4. Let A ∈ Rd×d and α, τ ∈ R+. Then the following statements are
equivalent

(a) Any solution y of (1.6) tends to zero as t→∞;
(b) The characteristic equation (2.2) has all roots with negative real parts;
(c) All eigenvalues λi (i = 1, . . . , d) of A are nonzero and satisfy

τ |λi|1/α < |arg (λi)| − απ/2 .
Moreover, if α /∈ Z+, then the convergence to zero is of algebraic type; more pre-
cisely, for any solution y of (1.6) there exists a suitable integer j ∈ {0, . . . , dαe}
such that |y(t)| ∼ tj−α−1 as t → ∞ (the symbol ∼ stands for asymptotic equiva-
lency).

Proof. (a)⇔(b): If λi = 0 for some i = 1, . . . , d, then the appropriate analogues
of (4.2) and (4.3) yield that there is always a constant term involved in these
expansions (this constant is nonzero if φ0 is nonzero), hence the property (a) is
not true. Obviously, the property (b) cannot occur as well provided λi = 0 for
some i = 1, . . . , d. Thus, without loss of generality, we may assume λi 6= 0 for all
i = 1, . . . , d.

The statement (a) is valid if and only if (4.2) and (4.3) do not contain any terms
with a non-negative real part of the argument, which directly yields the equivalency
(see also [11]).

(b)⇔(c): It is a direct consequence of Proposition 3.2.
Consequently, since all the exponential terms in (4.2) and (4.3) have a negative

argument, they are suppressed by the algebraic terms. The presence of the term
behaving like tj−α−1 for j = 1, . . . , dαe as t → ∞ is determined by values φj−1.
If φj−1 = 0 for all j = 1, . . . , dαe, the integral term (4.3) becomes dominant. The
integrability of φ enables us to write

lim
t→∞

1

t−α−1

∣∣
∫ 0

−τ
Gλi,τ,m
α,α (t− τ − u)φ̂p(u)du

∣∣

=
∣∣
∫ 0

−τ
lim
t→∞

(−1)m+1(m+ 1)(1 + τ/t− u/t)−α−1

λm+1
i Γ(−α)

φ̂p(u)du
∣∣

= K
∣∣
∫ 0

−τ
φ̂p(u)du

∣∣

for a suitable real K, therefore the integral term behaves like t−α−1 as t→∞. This
completes the proof. �

For the case of scalar equation (4.4), we obtain the following result.

Corollary 4.5. Let a ∈ R and α, τ ∈ R+. All solutions y of (4.4) tend to zero if
and only if

α < 2 and −
( (2− α)π

2τ

)α
< a < 0 .

In particular, an interesting link between Theorems 4.1 and 4.4 is provided by
the following assertion.

Corollary 4.6. Let A ∈ Rd×d, α ∈ R+ \ Z+ and τ ∈ R+. If (1.6) has a non-
trivial oscillatory solution, then it has also a solution which does not tend to zero
as t→∞.
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Remark 4.7. In fact, formulae (4.1)–(4.3) reveal that any non-trivial solution of
(1.6) tending to zero is non-oscillatory. Moreover, the solutions tending to zero
pose an algebraic decay (there is no solution with an exponential decay).

5. Other oscillatory properties of (4.4)

In the classical integer-order case, oscillation argumentation often uses the fact
that exp(swt) is a solution of (1.3) for any root sw of the corresponding character-
istic equation

s− a exp{−sτ} = 0 . (5.1)

In particular, if (5.1) admits a real root, then (1.3) has (via appropriate choice of φ)
a non-oscillatory solution. In the fractional-order case, no such a direct connection
for the influence study of characteristic roots of

sα − a exp{−sτ} = 0 (5.2)

on the oscillatory behaviour of (4.4) is available. Nevertheless, as we can see from
(4.1)–(4.3), the exponential functions generated by characteristic roots of (5.2)
again play an important role in qualitative analysis of solutions of (4.4). Using
this fact, we are able to describe some oscillatory properties of (4.4) with respect
to asymptotic relationship between the studied solutions and the corresponding
exponential functions. To specify this relationship, we introduce the following as-
ymptotic classifications of solutions of (4.4).

Definition 5.1. Let a ∈ R and α, τ ∈ R+. The solution y of (4.4) is called major
solution, if it satisfies the asymptotic relationship

lim sup
t→∞

∣∣ y(t)

tk1 exp{s1t}
∣∣ > 0 ,

where s1 is the rightmost root of (5.2) and k1 its algebraic multiplicity.

Definition 5.2. Let a ∈ R, α, τ ∈ R+, sw (w = 1, 2, . . . ) be roots of (5.2) with
ordering <(sw) ≥ <(sw+1) and let kw (w = 1, 2, . . . ) be the corresponding algebraic
multiplicities. The solution y of (4.4) is called m-minor solution, if it satisfies the
asymptotic relationships

lim sup
t→∞

∣∣ y(t)

tkm exp{smt}
∣∣ = 0 and lim sup

t→∞

∣∣ y(t)

tkm+1 exp{sm+1t}
∣∣ > 0 .

Remark 5.3. The notions of the major and m-minor solutions are not just theo-
retical, but such solutions can be constructively obtained via appropriate choice of
the initial function φ. For example, if s1 is simple with a non-negative real part,
then, by (4.1)–(4.3), the major solution occurs if φ meets the condition

dαe−1∑

j=0

φjb1,j + ac1,0

∫ 0

−τ
φ(u) exp{−s1(τ + u)}du 6= 0

where b1,j , c1,0 have the same meaning as in (4.2)–(4.3). Clearly, such a con-
dition is satisfied by infinitely many initial functions, e.g. by φ(u) = 1, φj = 0
(j = 1, . . . , dαe − 1) and φ0 6= −ac1,0(1− exp{−s1τ})/(b1,0s1). Similarly, m-minor
solution is characterized by the conditions

dαe−1∑

j=0

φjbw,j + acw,0

∫ 0

−τ
φ(u) exp{−sw(τ + u)}du = 0 for w = 1, . . . ,m ,
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dαe−1∑

j=0

φjbm+1,j + acm+1,0

∫ 0

−τ
φ(u) exp{−sm+1(τ + u)}du 6= 0

provided sw (w = 1, . . . ,m+ 1) are simple roots and bw,j , cw,0, bm+1,j , cm+1,0 have
the same meaning as in (4.2)–(4.3).

Using the notions of major and m-minor solutions, we can formulate in a more
detail assertions revealing the relation between oscillatory properties of (4.4) and
location of roots of (5.2) in the complex plane.

Lemma 5.4. Let a ∈ R \ (Q0(α, τ) ∪ {0}), α ∈ R+ \ Z+, τ ∈ R+ and let sw
(w = 1, 2, . . . ) be roots of (5.2) with ordering <(sw) ≥ <(sw+1). Then the major
solutions of (4.4) do not tend to zero and there exists M > 0 such that all m-minor
solutions of (4.4) are non-oscillatory and tend to zero as t → ∞ for all m ≥ M .
Furthermore, it holds:

(i) If a ≤ −((2 − α)π/(2π))α for α < 2 or a < 0 for α > 2, then all major
solutions of (4.4) are oscillatory.

(ii) If α < 4 and 0 < a < ((4 − α)π/(2π))α, then all non-trivial solutions of
(4.4) are non-oscillatory.

(iii) If α < 4 and a = ((4 − α)π/(2π))α, then all major solutions of (4.4)
are non-oscillatory. Moreover, all 1-minor solutions are oscillatory and
bounded.

(iv) If a > ((4 − α)π/(2π))α for α < 4 or a > 0 for α > 4, then all major
solutions of (4.4) are non-oscillatory. Moreover, all 1-minor solutions are
oscillatory and unbounded.

Proof. The first part of the assertion follows from the expansion of solution y of
(4.4) based on (4.2)–(4.3). By Proposition 3.2, the rightmost root s1 has a non-
negative real part, therefore the major solutions involve, as a dominant term, an
exponential function which does not tend to zero. Using a technique similar to that
in Remark 5.3 we can always eliminate all terms in the asymptotic expansion of y
corresponding to the characteristic roots with a non-negative real part, and, thus,
construct non-oscillatory m-minor solutions algebraically tending to zero. Further
utilization of this arguments enables us to obtain even more detailed results:

(i) The value a ≤ −((2 − α)π/(2π))α for α < 2 or a < 0 for α > 2 guarantees
that the rightmost root s1 has a non-negative real part and non-zero imaginary
part (see Propositions 3.1 and 3.2), therefore the major solutions are oscillatory.

(ii)–(iv) If a > 0, Proposition 3.1(i) implies that the rightmost root s1 is a positive
real, therefore the major solutions are non-oscillatory. Eliminating the rightmost
root s1 as in Remark 5.3, the terms corresponding to s2 become dominant and,
again using Proposition 3.2, we obtain the parts (ii)–(iv). �

Remark 5.5. For a = 0, (5.2) has the only root s1 = 0 with multiplicity dαe
and the qualitative behaviour is implied directly by Lemma 2.6(i). In particular, if
α < 1, then all non-trivial solutions of (4.4) are constant, i.e. they are bounded and
non-oscillatory. If α > 1, then all non-trivial solutions of (4.4) are non-oscillatory.
Moreover, if φj = 0 for all j = 1, . . . , dαe − 1, then the solutions are bounded,
otherwise being unbounded.
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It is of a particular interest to emphasize that unlike the integer-order case,
there is no combination of entry parameters such that all the solutions of (4.4) are
oscillatory. In fact, (4.4) has always infinitely many non-oscillatory solutions.

6. Concluding remarks

We have discussed oscillatory and related asymptotic properties of solutions
of the fractional delay differential system (1.6) as well as of the corresponding
scalar equation (4.4). The obtained oscillation results qualitatively differ from
those known from the classical oscillation theory of (integer-order) delay differential
equations. We survey here the most important notes related to this phenomenon.

First, while the appropriate criteria from the classical theory (such as Theorem
1.1) formulate necessary and sufficient conditions for oscillation of all solutions,
their fractional counterparts (Theorem 4.1) present conditions for non-oscillation
of all non-trivial solutions. In particular, our analysis shows that (1.6) cannot ad-
mit only oscillatory solutions. Secondly, considering (1.6), one can observe a close
resemblance between non-oscillation of all non-trivial solutions and convergence to
zero of all solutions (this property defines asymptotic stability of the zero solution
of (1.6)). The latter property is sufficient for non-oscillation of all non-trivial solu-
tions of (1.6) and, moreover, it is not far from being also a necessary one. These
features (along with some other precisions made in Section 5) demonstrate that
(non)oscillatory properties of (1.6) qualitatively depend on the fact if the value α
is integer or non-integer. In particular, Corollary 4.2 implies that the endpoints
of corresponding non-oscillation intervals depend continuously on changing non-
integer derivative order α; when α is crossing the integer-order value, a sudden
change in oscillatory behaviour occurs (see Corollary 1.2). Note that despite of
some introductory papers on oscillation of (1.6) and other related fractional delay
differential equations (see, e.g. [1, 17]), these properties have not been reported yet.

On the other hand, one can observe that dependence of stability areas of (1.6) on
changing derivative order is “continuous”. As illustrated via Figures 1–4, this area is
continuously becoming smaller, starting from the circle (corresponding to the non-
differential case when α = 0) to the empty set (when α = 2). We add that the way
to stability remains closed for all real α ≥ 2. From this viewpoint, considerations
of (1.6) with non-integer derivative order enable a better understanding of classical
stability results on (1.6) with integer α.

The method utilized in our oscillation analysis indicates that the main reason of
a rather strange oscillatory behaviour of (1.6) with non-integer α is hidden in the
algebraic rate of convergence of its solutions to zero (compared to the exponential
rate known from the integer-order case). Since this type of convergence has been
earlier described not only for other types of fractional delay equations (see [2, 9,
11, 12]), but also for fractional equations without delay (see [4, 13, 14, 16]), the
above described oscillatory behaviour might be typical for a more general class of
fractional differential equations.

Acknowledgements. This research was supported by the grant 17-03224S from
the Czech Science Foundation.
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[7] I. Győri, G. Ladas; Oscillation Theory of Delay Differential Equations: With Applications,
Oxford University Press, Oxford, 1991.

[8] T. Hara, J. Sugie; Stability region for systems of differential-difference equations, Funkcial.
Ekvac., 39 (1996), 69–86.

[9] E. Kaslik, S. Sivasundaram; Analytical and numerical methods for the stability analysis of

linear fractional delay differential equations, J. Comput. Appl. Math., 236 (2012), 4027–4041.
[10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and Applications of Fractional Differ-

ential Equations, Elsevier, Amsterdam, 2006.

[11] K. Krol; Asymptotic properties of fractional delay differential equations, Appl. Math. Com-
put., 218 (2011), 1515–1532.
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Appendix C

Paper on overview for one-term
FDDS [37] (Math Appl, 2020)

Our work on [6,10] brought us significant insights into the stability and asymptotics
of one-term FDDS, but not all findings aligned with the concepts of previous papers.
Consequently, [37] (my author’s share 100 %) aimed to consolidate the topic and to
extend it.

In this paper, we provided a comprehensive overview of the stability and asymp-
totics theory for one-term FDDS, considering the two most common definitions
of fractional derivatives: Caputo and Riemann-Liouville. Building on techniques
adopted in our prior research, we derived optimal stability conditions based on the
position of eigenvalues in the complex plane. We elaborated on the implications
of using different definitions of fractional derivative, detailing distinctions on the
stability boundary and in overall asymptotic behaviour.

– 65 –
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ON STABILITY OF DELAYED DIFFERENTIAL SYSTEMS OF
ARBITRARY NON-INTEGER ORDER

TOMÁŠ KISELA

Abstract. This paper summarizes and extends known results on qualitative behavior
of solutions of autonomous fractional differential systems with a time delay. It
utilizes two most common definitions of fractional derivative, Riemann–Liouville
and Caputo one, for which optimal stability conditions are formulated via position
of eigenvalues in the complex plane. Our approach covers differential systems of
any non-integer orders of the derivative. The differences in stability and asymptotic
properties of solutions induced by the type of derivative are pointed out as well.

1. Introduction

In many areas of science and technology we often meet problems which are well
described by differential systems with a time delay. Examples of such situations
might be reaction time of technical and chemical systems or heredity in population
dynamics. Qualitative theory for these equations is summarized in, e.g. [2,5]. The
study of delayed systems involving viscoelasticity, anomalous diffusion or control
theory naturally suggests to enrich our models with derivatives of non-integer order
which proved to be very effective in these areas (see, e.g. [4, 8]).

This is the main motivation for our study of two delayed systems which can be
written as

Dα
0 y(t) = Ay(t− τ) , t ∈ (0,∞), α ∈ R+ \ Z, (1.1)

y(t) = φ(t) , t ∈ [−τ, 0], (1.2)
Dα−k

0 y(t)
∣∣
t=0 = yα−k , k = 1, . . . , dαe (1.3)

and
CDα

0 y(t) = Ay(t− τ) , t ∈ (0,∞), α ∈ R+ \ Z, (1.4)
y(t) = φ(t) , t ∈ [−τ, 0], (1.5)
y(dαe−k)(0) = ydαe−k , k = 1, . . . , dαe , (1.6)

where Dα
0 and CDα

0 denote the so-called Riemann–Liouville and Caputo differential
operators of order α, respectively. Further, A ∈ Rd×d is a constant d× d matrix,
y· ∈ Rd are constant vectors and τ > 0 is a constant delay. As usual for delayed

MSC (2010): primary 34K37, 34K20; secondary 34K25.
Keywords: fractional delay differential system, stability, asymptotic behavior, Riemann–

Liouville derivative, Caputo derivative.
The research was supported by the grant GA20-11846S of the Czech Science Foundation.
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equations, the initial condition is given by φ ∈ L1[−τ, 0] (componentwise) and
the use of fractional derivatives allows us to prescribe also initial values for t = 0
separately. We intentionally leave out the integer-order values of α since they
coincide with the known classical cases.

A serious qualitative analysis of such equations is being performed less than
two decades. It spans across scalar and vector cases, various methods like D-
decomposition or Laplace transform are used. For more details we refer to [1,3,6,9]
which are the main sources for this paper.

The paper is organized as follows. In Section 2 we outline some basic preliminary
results useful in our further considerations. Section 3 is devoted to the discussion of
solution representations and their comparison. The main results are concentrated
in Section 4 where we summarize known facts as well as derive some original ones.
Section 5 concludes the paper with a few final remarks.

2. Preliminaries

Let f be a real function. We use the standard definition of fractional integral of
order γ > 0

Iγ0f(t) =
∫ t

0

(t− ξ)γ−1

Γ(γ) f(ξ)dξ, t ≥ 0 .

We employ both the wide used definitions of fractional derivative of order α > 0
called the Riemann-Liouville and Caputo derivative introduced as

Dα
0 f(t) = ddαe

dtdαe
(

Idαe−α0 f(t)
)
, t ≥ 0 ,

CDα

0 f(t) = Idαe−α0

(
ddαe
dtdαe f(t)

)
, t ≥ 0 ,

respectively. Additionally, we put CD0
0f(t) = D0

0f(t) = f(t) (for more information
on fractional operators we refer, e.g. to [4, 8]).

The key tool, utilized throughout this paper, is the Laplace transform which is,
for f , introduced as

L(f(t))(s) =
∫ ∞

0
exp{−st}f(t)dt, s ∈ C

provided the integral converges. To perform the transform of (1.1) and (1.4),
we need a clear view on Laplace transform of a function with shifted (delayed)
argument which is given by

L(f(t− τ)h(t− τ))(s) = exp{−τs}L(f(t))(s), τ > 0,

L(f(t− τ))(s) = exp{−τs}L(f(t))(s) + exp{−τs}
∫ 0

−τ
exp{−st}f(t)dt, τ > 0 .

(2.1)
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Also, using the formulae for Laplace transform of convolution and power function

L
(∫ t

0
f(t− ξ)g(ξ)dξ

)
(s) = L(f(t))(s) · L(g(t))(s),

L
(

tη

Γ(η + 1)

)
(s) = s−η−1, η > −1,

we can see the origin of Laplace transforms of fractional operators

L(Iγ0f(t))(s) = s−γL(f(t))(s), γ > 0,

L(Dα
0 f(t))(s) = sαL(f(t))(s)−

dαe∑

k=1
sk−1Dα−k

0 f(t)
∣∣
t=0, α > 0, (2.2)

L(CDα

0 f(t))(s) = sαL(f(t))(s)−
dαe∑

k=1
sα−kf (k−1)(0), α > 0. (2.3)

The symbol h denotes the Heaviside step function defined as h(ξ) = 1 for ξ ≥ 0
and h(ξ) = 0 for ξ < 0. When applied on a vector function, the Laplace transform
is considered componentwise.

We note that the system matrix A of (1.1) and (1.4) can be rewritten with
the use of a matrix Λ in a Jordan canonical form with the Jordan blocks on its
diagonal as A = TΛT−1, where T is a regular real d× d matrix,

Λ =




J1 0 · · · 0
0 J2 · · · 0
...

... . . . ...
0 0 · · · Jq


 , Jk =




λi 1 0 · · · 0

0 λi 1 . . . ...
... . . . . . . . . . 0
0 · · · λi 1
0 · · · 0 λi



, k = 1, . . . , q,

and λi (i = 1, . . . , n) are distinct eigenvalues of A. The number of Jordan blocks
corresponding to λi is called geometric multiplicity of λi. The sum of the sizes of
all Jordan blocks corresponding to λi is called algebraic multiplicity of λi.

Before we proceed to the next section, we recall the stability notions related to
our linear fractional differential systems with a delay. The zero solution is said to
be stable (asymptotically stable) if the solution of the system is bounded (tends
to zero as t→∞) for any initial function φ ∈ L1([−τ, 0]).

3. Solution representations for (1.1) and (1.4)

As in the integer-order case (see, e.g. [2,5]), an essential role is played by analogue
of the fundamental matrix solution also for (1.1) and (1.4) (see, e.g. [1]). In order
to simplify the notation dealing with the orders α greater than one, we introduce
its generalization in form of the following functions

RA,τα,β (t) = L−1 ((sαI −A exp{−sτ})−1sα−β
)

(t) , α ∈ R+ \ Z, β ∈ R+

where A ∈ Rd×d and I is the identity d× d matrix. Employing these R-functions,
we arrive at the following solution representations.
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Theorem 3.1. The solution yRL of (1.1)–(1.3) is given by

yRL(t) =
dαe∑

k=1
RA,τα,α−k+1(t)yα−k +

∫ 0

−τ
RA,τα,α(t− τ − u)Aφ(u)du.

Proof. Applying (2.1), (2.2) on (1.1)–(1.3), we get

L(y(t))(s)

= (sαI −A exp{−sτ})−1



dαe∑

k=1
sk−1yα−k +

∫ 0

−τ
exp{−s(t+ τ)}Aφ(t)dt




=
dαe∑

k=1
L(RA,τα,α−k+1(t))(s)yα−k +

∫ 0

−τ
exp{−s(t+ τ)}L(RA,τα,α(t))(s)Aφ(t)dt

which yields the assertion. �

Theorem 3.2. The solution yC of (1.4)–(1.6) is given by

yC(t) =
dαe∑

k=1
RA,τα,k (t)yk−1 +

∫ 0

−τ
RA,τα,α(t− τ − u)Aφ(u)du.

Proof. Analogously as above, applying (2.1), (2.3) on (1.4)–(1.6), we obtain

L(y(t))(s)

= (sαI −A exp{−sτ})−1



dαe∑

k=1
sα−kyk−1 +

∫ 0

−τ
exp{−s(t+ τ)}Aφ(t)dt




=
dαe∑

k=1
L(RA,τα,k (t))(s)yk−1 +

∫ 0

−τ
exp{−s(t+ τ)}L(RA,τα,α(t))(s)Aφ(t)dt

which again concludes the proof. �

Remark 3.3. We can see that the integral terms involving the initial function φ
are for yRL and yC identical. The difference occurs in the terms involving the local
initial conditions. Although the Caputo case is more studied in the literature, in
particular of order α ∈ (0, 1] (see, e.g. [1,3,6]), the Riemann-Liouville one actually
appears to be structurally closer to the classical case. Indeed, RA,τα,α seems to be
playing practically the same role as the fundamental matrix solution in integer-
order delay differential equations.

It might look like Theorems 3.1 and 3.2 are not that much explicit since the
R-functions are defined via the inverse Laplace transform. Now we show that these
functions can be actually evaluated pretty straighforwardly.

Applying the Jordan canonical form theory, we can write

L(RA,τα,β (t))(s) = (sαI −A exp{−sτ})−1sα−β = T (sαI − Λ exp{−sτ})−1sα−βT−1 .
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Clearly, the matrix (sαI − Λ exp{−sτ})−1sα−β is block diagonal with the blocks
given by upper triangular strip matrices of the form

(sαI − Jke−sτ )−1sα−β =




sα−β

sα−λie−sτ
e−sτsα−β

(sα−λie−sτ )2 · · · e−(r−1)sτsα−β

(sα−λie−sτ )rk

0 sα−β

sα−λie−sτ
. . . e−(r−2)sτsα−β

(sα−λie−sτ )rk−1

...
... . . . ...

0 0 · · · sα−β

sα−λie−sτ



,

(3.1)
where Jk (k = 1, . . . , q) is the k-th block of Λ and rk is its size. It was proven in
[1] that the elements of this matrix can be expressed as

exp{−msτ}sα−β
(sα − λ exp{−sτ})m+1 = L(Gλ,τ,mα,β (t))(s)

where

Gλ,τ,mα,β (t) =
dt/τ−m−1e∑

j=0

(
m+ j

j

)
λj(t− (m+ j)τ)α(m+j)+β−1

Γ(α(m+ j) + β) , t > 0 .

To summarize the previous considerations, we can write the following assertion.

Lemma 3.4. Let A ∈ Rd×d, λi (i = 1, . . . , n) be distinct eigenvalues of A and
let pi be the largest size of the Jordan block corresponding to the eigenvalue λi.
Then the non-zero elements of matrix function RA,τα,β are linear combinations of
scalar functions

Gλi,τ,mα,β (t), m = 0, . . . , pi − 1, i = 1, . . . , n .

4. Main results

It is well known from the basic theory of the Laplace transform method that if
all poles of the Laplace image of solutions (roots of the so-called characteristic
equation) have negative real parts, then the zero solution of the studied equation
is asymptotically stable (and their non-zero solutions tend to zero in an expo-
nential rate). On the other hand, if there exists a pole with a positive real part,
the corresponding zero solution is not stable (its absolute value tends to infinity
exponentially). In the fractional case, it usually occurs a more complex situation,
involving also singular points and poles with the zero real parts, which require
a deeper analysis.

For our fractional problems (1.1) and (1.4), as it can be seen from the proof of
Theorems 3.1 and 3.2, the characteristic equation takes the form

det(sαI −A exp{−sτ}) = 0 or
n∏

i=1
(sα − λi exp{−sτ})wi = 0 , (4.1)

where λi (i = 1, . . . , n) are distinct eigenvalues of A and wi are the corresponding
algebraic multiplicities. As we can see from (4.1) and (3.1), for further eigenvalues
considerations it is sufficient to investigate the roots of the equation

p(s;λ) ≡ sα − λ exp{−sτ} = 0 (4.2)
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where λ is a complex parameter. Now, we perform a direct root analysis of (4.2).
In particular, we formulate the optimal conditions on λ ensuring that (4.2) does
not have any root with positive real part.

Lemma 4.1. Let α ∈ R+ \ Z, τ > 0 and λ ∈ C. Then all the roots of (4.2)
have negative real parts if and only if

α ∈ (0, 2) , |Arg (λ)| > απ

2 and |λ| <
( |Arg (λ)| − απ/2

τ

)α
(4.3)

where Arg (λ) ∈ (−π, π] is the principal argument of λ.

Proof. The case λ = 0 is trivial since then (4.2) has only the zero solution which
does not satisfy (4.3). Let λ 6= 0 and put

s = r exp{iϕ} , λ = % exp{iψ}
where r = |s|, % = |λ| and ϕ,ψ ∈ (−π, π] are principal arguments of s, λ, respec-
tively. Then we can write (4.2) for real and imaginary parts as a system of two
equations in the form

rα cos(αϕ)− % exp{−rτ cos(ϕ)} cos(ψ − rτ sin(ϕ)) = 0, (4.4)
rα sin(αϕ)− % exp{−rτ cos(ϕ)} sin(ψ − rτ sin(ϕ)) = 0. (4.5)

Now, let us assume that (4.2) has a root with a non-negative real part, i.e.
|ϕ| ≤ π/2.

For ϕ = 0, we have ψ = 0 (i.e. λ = %) from (4.5). Further, (4.4) implies, for r
and %, the relation rα = % exp{−rτ} which always allows to find an appropriate r
to a given %. Hence, (4.2) has a non-negative real root if and only if λ is a non-
negative real.

Let |ϕ| ∈ (0, π/2] \ {π/α}. Since |ϕ| 6= π/α, we have ψ − rτ sin(ϕ) 6= kπ for
any k ∈ Z and, by dividing and rearranging (4.4) and (4.5), we arrive at a new
reformulation of (4.4), (4.5) in the form

αϕ = ψ − rτ sin(ϕ) + 2kπ, (4.6)
rα = % exp{−rτ cos(ϕ)} (4.7)

for a suitable k ∈ Z (the replacement of kπ by 2kπ is implied by positivity of r
and %). Further, by eliminating r from (4.6), (4.7), we get the equation for ϕ as

(
ψ − αϕ+ 2kπ

τ sin(ϕ)

)α
= % exp{(αϕ− ψ − 2kπ) cot(ϕ)} .

As proven in [1] for α ∈ (0, 1), the left-hand side is decreasing with respect to ϕ
on (0, π/2] with the lowest value at ϕ = π/2 for any k. The right-hand side is
increasing with respect to ϕ on (0, π/2] with the largest value at ϕ = π/2 for any
k. It can be easily checked that the situation for α ≥ 1 is the same provided we
put the left-hand side equal to zero for ϕ such that ψ−αϕ+ 2kπ < 0. Obviously,
the existence of a root ϕ ∈ (0, π/2] for at least one k is ensured if and only if

|ψ| ≤ απ

2 or % ≥
( |ψ| − απ/2

τ

)α
. (4.8)
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We can see that (4.8)1 is automatically satisfied for α ≥ 2, hence for α ≥ 2 there is
always a root of (4.2) with a non-negative real part. We can see that, for α ∈ (0, 2),
(4.8) is a complement of (4.3).

So far, we have not investigated the situation |ϕ| = π/α ≤ π/2. However, it
can occur only for α ≥ 2 and in that case we already know that there is always
a root of (4.2) with a non-negative real part.

Summarizing the previous arguments, we can conclude the proof. �

Lemma 3.4 shows that functions of the type Gλ,τ,mα,β play, for (1.1) and (1.4),
an analogous role as exponential functions for integer-order systems. Hence, it
is crucial to have a good uderstanding of asymptotic behavior of Gλ,τ,mα,β and its
relation to (4.2) which is provided by the following assertion which slightly extends
the result presented in [1].

Lemma 4.2. Let λ ∈ C, α, β, τ ∈ R+ and m ∈ Z be such that α ∈ R+ \ Z,
m ≥ 0. Further, let si (i = 1, 2, . . . ) be the roots of (4.2) with ordering <(si) ≥
<(si+1) (in particular, s1 is the zero with the largest real part).

(i) If λ = 0, then

G0,τ,m
α,β (t) = (t−mτ)mα+β−1

Γ(mα+ β) h(t−mτ).

(ii) If λ is such that s1 has negative real part, then

Gλ,τ,mα,β (t) = (−1)m+1

λm+1Γ(β − α) (t+ τ)β−α−1

+ (−1)m+1(m+ 1)
λm+2Γ(β − 2α) (t+ 2τ)β−2α−1 +O(tβ−3α−1) as t→∞.

(iii) If λ is such that s1 is purely imaginary or it has positive real part, then

Gλ,τ,mα,β (t) =
m∑

j=0
(t−mτ)j(aj exp{s1(t−mτ)}

+ bj exp{s2(t−mτ)}) +
{
O(tm exp{<(s3)t}), if <(s3) ≥ 0,
O(tβ−α−1), if <(s3) < 0

as t→∞
where aj , bj are suitable nonzero complex constants (j = 0, . . . ,m).

Proof. The assertion was proved in [1] for the case α ∈ (0, 1). The generalization
for α > 1 is a tedious but direct analogue. �

Now we are in a position to formulate the main results of this paper. For the
sake of lucidity, we introduce the following subset of complex numbers motivated
by (4.3) as

Sα,τ =
{
λ ∈ C : |λ| <

( |Arg (λ)| − απ/2
τ

)α
, |Arg (λ)| > απ

2

}
,

which we call the stability region of (1.1) and (1.4).
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Theorem 4.3. Let A ∈ Rd×d, α ∈ R+ \ Z and τ > 0. Further, let p0 ∈ Z
be the largest size of the Jordan block corresponding to the zero eigenvalue of A,
where we put p0 = 0 if A has only non-zero eigenvalues.

(i) The zero solution of (1.1) is asymptotically stable if and only if α ∈ (0, 2),
all non-zero eigenvalues of A belong to Sα,τ and p0 < 1/α.

(ii) The zero solution of (1.1) is stable if and only if α ∈ (0, 2), all eigenvalues
of A belong to cl (Sα,τ ), all non-zero eigenvalues of A lying on ∂Sα,τ have
the same algebraic and geometric multiplicities and p0 ≤ 1/α.

Proof. Theorem 3.1 and Lemma 3.4 imply that the solution components of (1.1)
are formed as linear combinations of functions

Gλi,τ,mα,α−k+1(t) and
∫ 0

−τ
Gλi,τ,mα,α (t− τ − u)φj(u)du , (4.9)

where k = 1, . . . , dαe, λi (i = 1, . . . , n) are eigenvalues of A, m is a non-negative
integer as specified in Lemma 3.4 and φj (j = 1, . . . , d) are components of the
initial function.

Lemma 4.1 implies that all roots of (4.1) have negative real part if and only if
α ∈ (0, 2) and all eigenvalues belong to Sα,τ . Moreover, (4.1) has at least one root
with zero real part and other roots with a negative real part if and only if at least
one eigenvalue lies on the boundary of Sα,τ .

Thus, the asymptotic behavior of the solution can be derived from Lemma 4.2.
The functions (4.9)1 are described directly, we just point out that for λi ∈ Sα,τ
the first term in the expansion cancels out due to the negative integer argument
in the Gamma function, so that we obtain

Gλi,τ,mα,α−k+1(t) = (−1)m+1(m+ 1)
λm+2
i Γ(−α− k + 1)

(t+ 2τ)−α−k +O(t−2α−k) as t→∞.

Now, we investigate (4.9)2. Employing the assuption φ ∈ L1[−τ, 0] and Lemma
4.2, we can distinguish several cases:

Let α ∈ (0, 2) and λi ∈ Sα,τ . The second mean value theorem implies
∫ 0

−τ
Gλi,τ,mα,α (t− τ − u)φ(u)du = Gλi,τ,mα,α (t)

∫ ξ

−τ
φ(u)du

= K1(t+ 2τ)−α−1 +O(t−2α−1) as t→∞ ,

where K1 ∈ R is non-zero and ξ ∈ (−τ, 0].
Now, let λi = 0. By the same approach we arrive at

∫ 0

−τ
G0,τ,m
α,α (t− τ − u)φ(u)du = K2(t−mτ)(m+1)α−1 ,

where K2 ∈ R is non-zero. This expression vanishes for t → ∞, if and only if
m+ 1 = p0 < 1/α.

The cases for λi ∈ ∂Sα,τ \ {0} and λi /∈ cl (Sα,τ ) can be handled similarly.
We arrive at the conclusion that (4.9)2 is bounded, when the non-zero eigenvalue
lying on the boundary of stability region has the same algebraic and geometric
multiplicity. Otherwise the absolute value of (4.9)2 increases polynomially (when
the eigenvalue lies on the boundary) or exponentially. �
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Theorem 4.4. Let A ∈ Rd×d, α ∈ R+ \ Z and τ > 0. Further, let p0 ∈ Z
be the largest size of the Jordan block corresponding to the zero eigenvalue of A,
where we put p0 = 0 if A has only non-zero eigenvalues.

(i) The zero solution of (1.4) is asymptotically stable if and only if α ∈ (0, 2)
and all eigenvalues of A belong to Sα,τ .

(ii) The zero solution of (1.4) is stable if and only if α ∈ (0, 2], all eigenvalues
of A belong to cl (Sα,τ ), all non-zero eigenvalues of A lying on ∂Sα,τ have
the same algebraic and geometric multiplicities and p0 ≤ 2− dαe.

Proof. The idea of the proof is equivalent to that one of Theorem 4.3. In
particular, the solution components of (1.4) are given by linear combinations of

Gλi,τ,mα,k (t) and
∫ 0

−τ
Gλi,τ,mα,α (t− τ − u)φj(u)du , (4.10)

where k = 1, . . . , dαe, λi (i = 1, . . . , n) are eigenvalues of A, m is a non-negative
integer as specified in Lemma 3.4 and φj (j = 1, . . . , d) is a component of the initial
function. Thus, we see that (4.10)2 is the same as (4.9)2 while (4.10)1 differs with
respect to (4.9)1 due to the change of index. This causes only a different decay
rate for λi ∈ cl (Sα,τ ).

Overall, there is only one difference in stability behavior which occurs for λi = 0
when we have

G0,τ,m
α,k (t) = (t−mτ)mα+k−1

Γ(mα+ k) .

We can see that this function never tends to zero with t → ∞ and it is bounded
if and only if mα + k − 1 = 0 which means dαe = 1 (i.e. k = 1) and p0 = 1 (i.e.
m = 0). �

Remark 4.5. (i) Theorems 4.3 and 4.4 show that Sα,τ is the stability region for
delayed fractional differential systems for Riemann-Liouville and Caputo deriva-
tive, i.e. for (1.1) and (1.4), respectively. Figure 1 represents the situation for
α ∈ (0, 1) when the stability region includes also points with positive real part.
We can see in Figure 2 how the region is transformed for α ∈ (1, 2), and it is ap-
parent how the stability region vanishes for α→ 2. Also, for τ → 0, Sα,τ tends to
the stability region known from theory of fractional differential equations without
delay (see, e.g. [7, 9]).

(ii) From the stability viewpoint, the only difference between (1.1) and (1.4)
occurs if there is a zero eigenvalue and the order of derivatives is less than 1. In
this case, the zero solution to (1.1) can be asymptotically stable, stable or unstable,
depending on the particular value of α and multiplicities of the zero eigenvalue.
The zero solution of (1.4) is stable if algebraic and geometric multiplicities of the
zero eigenvalue are equal, otherwise it is unstable (i.e. it does not depend on the
particular value of α).

The proof technique used for Theorems 4.3 and 4.4 actually reveals more than
the stability properties. Due to its constructive nature we can actually derive also
the asymptotic behavior of the solutions to (1.1) and (1.4). We summarize the
comparisons of the two cases in the following assertions dealing with the asymptotic
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equivalence (denoted by the symbol ∼) relationships for norms of solutions (we
use the symbol ‖ · ‖ for Euclidean norm in Rd).

Theorem 4.6. Let A ∈ Rd×d, α ∈ (0, 2), τ > 0 and let all the eigenvalues of
A belong to Sα,τ . Further, we denote by yRL and yC the solutions of (1.1)–(1.3)
and (1.4)–(1.6), respectively. Then it holds

‖yRL(t)‖ ∼ t−α−1 and ‖yC(t)‖ ∼ tdαe−α−1 as t→∞ (4.11)
for almost all choices of initial conditions. If yRL and yC do not follow (4.11),
then their norms tend to zero with a faster decay rate.

Proof. Theorems 3.1 and 3.2 indicate some particular choices of initial condi-
tions, e.g. y0 = 0, which can remove the dominating terms from yRL and yC
and therefore affect the decay rate. The particular asymptotic properties are then
implied by Lemma 4.2. �

Theorem 4.7. Let A ∈ Rd×d, α ∈ (0, 2) and τ > 0. Let A has the zero
eigenvalue and denote p0 the size of the largest Jordan block corresponding to
this zero eigenvalue. Let all non-zero eigenvalues of A belong to Sα,τ . Further,
we denote yRL and yC the solutions of (1.1)–(1.3) and (1.4)–(1.6), respectively.
Then it holds

‖yRL(t)‖ ∼ tp0α−1 and ‖yC(t)‖ ∼ t(p0−1)α+dαe−1 as t→∞ (4.12)
for almost all choices of initial conditions. If yRL and yC do not follow (4.12),
then their norms are even smaller for t large enough.

Proof. The idea of the proof is analogous to the previous case. �

Remark 4.8. (i) We can observe an interesting distinction between the way
how the asymptotic behavior of yRL and yC depends on α. While in the Riemann–
Liouville case we see the algebraic decay rate depending directly on α, in the
Caputo case the decay rate is driven by the decimal part of α, i.e. by the differ-
ence dαe − α. Indeed, if we consider for example α1 = 0.4 and α2 = 1.4, then
the solutions of (1.4) follow essentially the same asymptotic relations, while the
Riemann–Liouville ones do not.

(ii) We can employ a similar analysis also in the cases that are not covered by
Theorems 4.6 and 4.7, i.e. when there is a non-zero eigenvalue on the boundary
or outside the closure of the stability region. We note that if there is a non-zero
eigenvalue lying outside the closure of the stability region, the norms of non-zero
solutions increase exponentially for both (1.1) and (1.4).

(iii) We point out that the asymptotic results obtained for the delayed fractional
differential systems actually mirror the well-known results for fractional differential
systems without a delay.

5. Conclusions

We have summarized and extended the results on qualitative behavior of solutions
of delayed fractional differential systems (1.1) and (1.4) of arbitrary order.

We have shown that the stability of the zero solution occurs only if the order
of derivatives is less than 2. Further, we have derived the precise description of
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the stability region which is for both (1.1) and (1.4) identical. The only difference
regarding the stability occurs when the system matrix A has a zero eigenvalue.
Then we observe the asymptotic stability property for (1.1) only if α < 1 and
the maximum size of the Jordan block corresponding to the zero eigenvalue being
less than 1/α. In the Caputo case (1.4), the asymptotic stability does not appear
and the zero solution is stable (but not asymptotically stable) only if α < 1 and
algebraic multiplicity of the zero eigenvalue being equal to the geometric one.

The asymptotic behavior displays more diversity. If the system matrix A has
all eigenvalues lying in the stability region, i.e. the zero solutions of both (1.1) and
(1.4) are asymptotically stable, we can generally say that the solutions of (1.1) go
to zero as t → ∞ faster that solutions of (1.4). Moreover, unlike the Riemann-
Liouville case, the decay rate of solutions to (1.4) does not depend on the value α
itself, but on its decimal part only.

The area of qualitative analysis of fractional differential equations with a time
delay, especially with higher-order derivative, provides a lot of open problems. Our
research may serve as one of the prerequisites to studies of more complex systems,
such as Dα

0 y(t) = ay(t) + by(t− τ) or its vector analogues.
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Appendix D

Paper on Lambert function and
one-term FDDE [15] (FCAA, 2023)

The topic of one-term FDDS seemed, in principle, mostly complete to us, at least
regarding stable solutions. We revisited it only recently in a re-union of the author’s
trio, which was primarily active before 2016. The inspiration for [15] (co-authors: J.
Čermák, L. Nechvátal; my author’s share 33 %) came from discussions nearly nine
years ago about a possible fractional generalization of the classical Lambert function
technique known from the stability analysis of ordinary delay differential equations.

As it turned out, this generalization is not only possible but, in some cases, easier
than other known approaches. We managed to re-derive fully explicit criteria that
had not been reached by this technique before, contributing to a better understand-
ing of unbounded solutions for higher-order FDDS. As a by-product, we created
an "asymptotic map" for unbounded solutions, showing their large-time exponen-
tial modulus growth and frequency of oscillations based on the location of system
matrix eigenvalue.

– 79 –



Fractional Calculus and Applied Analysis (2023) 26:1545–1565
https://doi.org/10.1007/s13540-023-00176-x

ORIG INAL PAPER

The Lambert function method in qualitative analysis of
fractional delay differential equations
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Abstract
Wediscuss an analytical method for qualitative investigations of linear fractional delay
differential equations. This method originates from the Lambert function technique
that is traditionally used in stability analysis of ordinary delay differential equations.
Contrary to the existing results based on such a technique, we show that the method
can result into fully explicit stability criteria for a linear fractional delay differential
equation, supported by a precise description of its asymptotics. As a by-product of
our investigations, we also state alternate proofs of some classical assertions that are
given in a more lucid form compared to the existing proofs.

Keywords Fractional delay differential equation (primary) · Lambert function ·
Stability · Asymptotic behavior
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1 Introduction

The paper discusses an analytical method for qualitative investigations of fractional
delay differential equations (FDDEs). These equations are currently very intensively
studied due to their importance in various application areas, with a special emphasis to
control theory. Indeed, presence of both the time lag as well as non-integer derivative
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order as control or tunning parameters in studied models provides a very efficient tool
for various control processes such as stabilization or destabilization of the particular
solutions of these models (for a pioneering work in this direction we refer to [17]).

Systematic investigations of FDDEs were initiated in the paper [9]. Here, stability
properties of

Dαx(t) = λx(t − τ), (1)

where α, τ ∈ R+, λ ∈ R and Dα is a fractional differential operator, were analyzed
using the fact that (1) is asymptotically stable (i.e., any its solution is eventually tending
to zero) if and only if all the roots of the characteristic equation

sα − λ exp(−sτ) = 0 (2)

have negative real parts. To explore such a location of characteristic roots with respect
to the imaginary axis, the Lambert function technique was utilized. The essence of
the method consists in a representation formula for characteristic roots in terms of
appropriate branches of this multi-valued function (for some precisions concerning
the correct use of the Lambert function technique in stability analysis of (1), we refer
also to [12]). A certain general disadvantage of this approach consists in its (seeming)
disability to provide stability criteria in an explicit form depending on entry parameters
only (i.e., on α, λ and τ in the case of (1)).

As the other papers on stability and asymptotic properties of (1) followed, the
Lambert function method was replaced by some alternate classical tools of stability
investigations (such as D–partition method or τ -decomposition method) modified to
the fractional case. Using these approaches, effective and non-improvable stability
conditions for (1), supported by some asymptotic bounds, were derived in [16] (the
case λ ∈ R, 0 < α < 1), [6] (the case λ ∈ C, 0 < α < 1), and partially also in [7]
(the case λ ∈ C, α > 0). Some of the mentioned results can be extended also to the
case of a two–term FDDE

Dαx(t) = μx(t) + λx(t − τ). (3)

In this respect, we refer to [2, 5, 15] (the case μ, λ ∈ R, 0 < α < 1) and [8] (the
case μ, λ ∈ R, 1 < α < 2). Following the integer-order case (see, e.g., [1]), (1) and
(3) may serve as test equations for numerical analysis of FDDEs. From this point of
view, it is very important to describe their basic qualitative properties in the strongest
possible form. Then, when analyzing appropriate numerical schemes applied to these
test equations, the ability to keep the key qualitative properties of the underlying exact
equations is of basic importance. For some other recent advances in qualitative theory
of FDDEs, we refer, e.g., to [3, 10, 11, 18–20, 23].

Following the above outlines, the aim of this paper is twofold. First, we deepen the
existing knowledge on some qualitative properties of (1) with the Caputo fractional
derivative. Second, perhaps a more important aspect of the paper consists in the way
how we aim to do it. We come back to the Lambert function method used in [9]
and show that this approach can offer more than formulae depending on the use of

123
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supporting software packages. In fact, this technique can result into actually effective
stability and asymptotic criteria.

The paper is organized as follows. Section 2 recalls some existingfindings on (1) and
essentials of the Lambert function theory. In Sect. 3, we explore the Lambert function
method in details. In particular, we give an alternate proof of the classical assertion
saying that the characteristic root generated by the principal branch of the Lambert
function has the largest real part, and formulate a criterion that enables to localize
values of the principal branch in the complex plane. Section 4 presents applications of
these results to (1). Here, we extend the existing stability criteria for (1) to arbitrary
(positive) real values of α, and formulate sharp asymptotic estimates for the solutions
of (1). Some final remarks in Sect. 5 conclude the paper.

2 Basic mathematical background

In this section, we summarize some known facts relevant to our next investigations.
First, we recall a close relationship between stability and asymptotic properties of (1),
and distribution of the characteristic roots of (2). Then, we recall some basics of the
Lambert function and its use in stability analysis of FDDEs.

It was shown in [7] that any solution x of (1) with the Caputo fractional derivative
(and a generally complex λ) can be written using the Mittag-Leffler type function

Gλ,τ
α,β(t) =

�t/τ�−1∑

j=0

λ j (t − jτ)α j+β−1

�(α j + β)
, α, β > 0, (4)

where �·� denotes the upper integer part. More precisely, if φ is a continuous initial
(complex-valued) function on [−τ, 0], φ0 = φ(0) and φ j , j = 1, . . . , �α� − 1, are
(complex) constants (considered when α > 1), then

x(t) =
�α�−1∑

j=0

φ j G
λ,τ
α, j+1(t) + λ

∫ 0

−τ

Gλ,τ
α,α(t − τ − ξ)φ(ξ) dξ (5)

is the solution of (1) satisfying x(t) = φ(t) for all t ∈ [−τ, 0], and limt→0+ x ( j)(t) =
φ j , j = 1, . . . , �α� − 1.

Based on some asymptotic results on (4), the solution (5) can be rewritten by the
use of the characteristic roots having non-negative real parts. We recall that (2) admits
countably many roots, and only a finite number of them is lying right to any line
�(s) = p, p ∈ R (throughout the paper, the symbol �(z) and �(z) stands for the real
and imaginary part of z ∈ C, respectively). If we denote by S the set of all roots of (2)
having non-negative real parts (note that S must be a finite set), then, for a non-integer
α, (5) can be rewritten as

x(t) =
∑

s∈S
cs exp(st) + O(t j−α) as t → ∞ (6)

123
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where cs are complex coefficients depending on α, τ , λ, φ, and j ∈ {−1, 0, . . . , �α�−
1} (the particular value of j depends on limit behavior of φ at t = 0). Notice that
j − α < 0, i.e., the function t j−α always tends to zero.
By (6), the roots of (2) play an essential role in qualitative behavior of the solu-

tions of (1). Following the classical integer-order pattern, the authors in [9] used the
following chain of steps

sα exp(sτ) = λ → s exp
( τ

α
s
)

= λ
1
α → τ

α
s exp

( τ

α
s
)

= τ

α
λ

1
α (7)

to express the roots of (2) via the Lambert function introduced as the solution of

W (z) exp(W (z)) = z, z ∈ C. (8)

Before we recall the root formula for (2) based on this special function, some of its
basic properties might be collected. The Lambert function is a multi-valued function
(except at z = 0) with infinitely many (single-valued) branches Wk , k ∈ Z. Neither
of them can be expressed in terms of elementary functions. In particular, W0 is called
a principal branch. For any z ∈ C,�(W0(z)) is between−π and π . The other branches
are numbered so that �(Wk(z)) is between (2k−2)π and (2k+1)π while �(W−k(z))
is between −(2k + 1)π and −(2k − 2)π for any z ∈ C and k = 1, 2, . . .. More
precisely, the ranges of W±k and W±(k+1), k = 0, 1, . . . , are separated by the curves

{w = x + i y ∈ C : x = −y cot(y), 2kπ < |y| < (2k + 1)π}

and the ranges of W1 and W−1 are separated by the half-line

{w = x + i y ∈ C : −∞ < x ≤ −1, y = 0}.

These separating curves correspond to the branch cuts in the z-plane defined as

{z = ξ + i η ∈ C : −∞ < ξ ≤ − exp(−1), η = 0}

in the case of W0, and

{z = ξ + i η ∈ C : −∞ < ξ ≤ 0, η = 0}

in the case of Wk , k 
= 0. Conventionally, the branch cut (having the argument π

in the z-plane) is mapped by Wk on its upper boundary in the w-plane. Only the
branches W0 and W−1 take on real values for a real z ∈ [− exp(−1),∞) and a real
z ∈ [− exp(−1), 0), respectively. Further details on the Lambert function (including
some historical remarks) can be found in [4], for other comments, see also [13] and
[22].

Now, following (7), all the roots of (2) can be expressed in the form

sk = α

τ
Wk

( τ

α
λ

1
α

)
, k ∈ Z. (9)
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By (6), a crucial role in analysis of (1) is played by the rightmost characteristic root
(i.e., the root of (2) with the largest real part). The following classical assertion says
that this root is just s0.

Lemma 1 Let z ∈ C. Then W0(z) has the largest real part �(W0(z)) among all the
other real parts �(Wk(z)), k ∈ Z.

The original proof of Lemma 1 is pretty long (see [22]). As a by-product of our
next procedures, we are going to present an alternate (and more simple) way how to
prove this assertion.

Remark 1 As pointed out in [12], the expression (9) is not quite correct for some
complex values of λ. More precisely, (7) contains taking the 1/α-power which means
that the roots given by (9) are identical to those of (2) only in the case

|Arg(λ)| ≤ απ

(we recall that −π < Arg(·) ≤ π ). This inequality is satisfied trivially when α ≥ 1
but makes a restriction when 0 < α < 1. In other words, if |Arg(λ)| > απ , then the
representation (9) can produce some superfluous roots that are actually not the true
roots of (2). As an example, we can consider, e.g., the caseλ = −1,α = 1/2 and τ = 1
when (2) has the rightmost root s0 ≈ −0.4172 − i 2.2651 (i.e., (1) is asymptotically
stable) while (9) produces s0 ≈ 0.4263 > 0. On this account, we discuss qualitative
properties of (1) for α > 1. Comments to the case 0 < α < 1 are provided in the final
section.

3 Some advances on the LambertW function

This section contains several key results on the Lambert function which proved to be
useful in qualitative investigations of (1). To obtain an actually effective and strong
asymptotic description of the solutions of (1), we need to effectively localize the
position of the rightmost characteristic root in the complex plane. More precisely,
by (6) and (9), we need to derive effective expressions of the real and imaginary
parts of W0(z) in terms of z. Thus, keeping in mind intended stability and asymptotic
analysis of (1), we can pose the following problems: For given p ∈ R and z ∈ C, is
it possible to characterize the properties �(W0(z)) < p and �(W0(z)) = p directly
in terms of z and p, i.e., without an evaluation of the principal branch of the Lambert
function? Further, for given q ∈ R and z ∈ C, is it possible to similarly elaborate on
the properties |�(W0(z))| > q and |�(W0(z))| = q? The following result yields an
affirmative answer to these questions.

Theorem 1 Let p, q ∈ R, p > −1, 0 < q < π , and z ∈ C, z 
= 0. Then

(i) �(W0(z)) < p if and only if either |z| < p exp(p) or

|z| ≥ |p| exp(p) and arccos

(
p exp(p)

|z|
)

+
√|z|2 − p2 exp(2p)

exp(p)
< |Arg(z)| ;

(10)
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(ii) �(W0(z)) = p if and only if

|z| ≥ |p| exp(p) and arccos

(
p exp(p)

|z|
)

+
√|z|2 − p2 exp(2p)

exp(p)
= |Arg(z)| ;

(11)

(iii) |�(W0(z))| > q if and only if

|Arg(z)| > q and
q

sin(|Arg(z)| − q)
exp

(
q cot(|Arg(z)| − q)

)
< |z|; (12)

(iv) |�(W0(z))| = q if and only if

|Arg(z)| > q and
q

sin(|Arg(z)| − q)
exp

(
q cot(|Arg(z)| − q)

) = |z|. (13)

Proof (i) We write z = |z| exp(i Arg(z)) and put xk = �(Wk(z)), yk = �(Wk(z))
where Wk , k ∈ Z are particular branches of the Lambert function. Substitution into
(8) yields

exp(xk)(xk cos(yk) − yk sin(yk)) = |z| cos(Arg(z)), (14)

exp(xk)(xk sin(yk) + yk cos(yk)) = |z| sin(Arg(z)). (15)

If we solve (14)–(15) with respect to unknowns xk exp(xk) and yk exp(xk), then

xk exp(xk) = |z| cos(Arg(z) − yk), (16)

yk exp(xk) = |z| sin(Arg(z) − yk). (17)

To show that x0 = �(W0)(z)) < p whenever |z| < p exp(p), we consider (16)
implying

x0 exp(x0) ≤ |z| < p exp(p).

Then the monotony property of the function g(p) = p exp(p) on (−1,∞) actually
implies x0 < p.

Now we assume that |z| ≥ |p| exp(p). Squaring and adding (16) and (17) we get

|z|2 = ((xk)
2 + (yk)

2) exp(2xk),

i.e.,

|yk | =
√|z|2 − (xk)2 exp(2xk)

exp(xk)
. (18)
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For the principal branch, it holds x0 ≥ −y0 cot(y0), |y0| < π , i.e., x0 sin(y0) +
y0 cos(y0) ≥ 0 whenever y0 ≥ 0. Multiplying this by exp(x0) and using (15), one gets

|z| sin(Arg(z)) = exp(x0)(x0 sin(y0) + y0 cos(y0)) ≥ 0

which implies Arg(z) ≥ 0 for y0 ≥ 0. If y0 < 0, the same argumentation leads to
Arg(z) ≤ 0, hence Arg(z)y0 ≥ 0, i.e., |Arg(z) − y0| ≤ π . Then (16) with k = 0 is
equivalent to

arccos(x0 exp(x0)/|z|) = |Arg(z) − y0| . (19)

Moreover, sign analysis of (17) with respect to Arg(z)y0 ≥ 0 yields |Arg(z)| ≥ |y0|,
i.e.,

|Arg(z) − y0| = |Arg(z)| − |y0|. (20)

Then, using (18), (19) and (20), we are able to set up an implicit dependence between
x0 = �(W0(z)) and z in the form f (x0, z) = 0 where f is defined via

f (p, z) = arccos

(
p exp(p)

|z|
)

− |Arg(z)| +
√|z|2 − p2 exp(2p)

exp(p)

for all p > −1 and z ∈ C such that |p| exp(p) ≤ |z|. Let z be fixed. Then

d f

dp
(p, z) = − (2p + 1) exp(3p) + |z|2 exp(p)

exp(2p)
√|z|2 − p2 exp(2p)

≤ − (p + 1)2 exp(p)√|z|2 − p2 exp(2p)
≤ 0,

hence, f is decreasing in p if |p| exp(p) ≤ |z|. Therefore,

f (p, z) < f (x0, z) = 0

whenever

p > x0 = �(W0(z)) and |p| exp(p) ≤ |z|.

(ii) The property follows directly from the proof of (i) using the fact that f (p, z) = 0
if and only if p = x0 due to monotony of f with respect to p.

(iii) Since W0 is symmetric in the sense W0(z) = W0(z) for all z ∈ C except those
lying on the branch cut along the negative real axis between −∞ and − exp(−1), it
suffices to assume the case y0 = �(W0(z)) > q > 0. We have already observed that
Arg(z) ≥ y0. In addition, a stronger property holds, namely Arg(z) > y0. Indeed,
possible equality Arg(z) = y0 implies y0 = 0 (due to (17)) which contradicts the
assumption y0 > q > 0. Hence, it must be 0 < Arg(z) − y0 < π as well as
0 < Arg(z) − q < π . We divide (16) by (17) and put k = 0 to get

x0 = y0 cot(Arg(z) − y0). (21)
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Taking the logarithm of (17) with k = 0, we also have

x0 = ln
(|z| sin(Arg(z) − y0)

) − ln(y0). (22)

Combining (21) and (22), we arrive at

ln
(|z| sin(Arg(z) − y0)

) − ln(y0) − y0 cot(Arg(z) − y0) = 0

representing again an implicit dependence, now between�(W0(z)) and z. If we denote

h(q, z) = ln
(|z| sin(Arg(z) − q)

) − ln(q) − q cot(Arg(z) − q),

then we have

dh

dq
(q, z) = −q sin(2(Arg(z) − q)) − sin2(Arg(z) − q) − q2

q sin2(Arg(z) − q)
.

While the denominator is positive, the numerator

N (q, z) = −q sin(2(Arg(z) − q)) − sin2(Arg(z) − q) − q2

is negative for each 0 ≤ q ≤ Arg(z). Indeed, we have

dN

dq
(q, z) = 2q(cos2(Arg(z) − q) − 1) ≤ 0

which implies that N (·, z) is non-increasing and, together with N (0, z) =
− sin2(Arg(z)) < 0, negative on [0,Arg(z)]. Consequently, h(·, z) is decreasing and
therefore h(q, z) > h(y0, z) = 0 whenever 0 < q < y0 < Arg(z). Taking into
account the above mentioned symmetry, we arrive (after some elementary algebra) at
(12).

(iv) The required property is again a consequence of monotony of the function h
from the previous part. �
Remark 2 (a) The properties (ii) and (iv) of Theorem 1 provide a new tool for evalu-
ations of the principal branch of the Lambert function. Let z 
= 0 be a fixed complex
number. Then the left-hand side of (11) is decreasing for all p ∈ [a,W0(|z|)] (a = −1
if |z| ≥ exp(−1) and a = W0(−|z|) if |z| < exp(−1)) fromπ to the zero value. Hence,
(11) has a unique root p∗ lying in this interval, and this root equals just �(W0(z)).
Similarly, the left-hand side of (13) is increasing for all q ∈ (0,Arg(z)) from the zero
value to infinity, i.e., (13) admits a unique positive root q∗ which is just �(W0(z)).

To illustrate this evaluation technique, we compute W0(z) for z = 1
2 + i

√
3
2 . Then

|z| = 1, Arg(z) = π/3 and the standard Newton method returns�(z) = p∗ ≈ 0.4843
in 5 iterations with the initial value p0 = 0.5 and the stopping criterion taken as
|pk+1 − pk | ≤ 10−16. The same method gives �(z) = q∗ ≈ 0.3808 in 7 iterations
with the initial value q0 = 0.5 and the same precision as in the case of the real part.
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In fact, the value p∗ + i q∗ matches the value produced by the MATLAB command
lambertw(1/2+sqrt(3)/2*1i) to all the 15 digits behind the decimal point.
Standardly, theNewtonorHalleymethod is applied directly to the equationw exp(w)−
z = 0 using the complex arithmetic. MATLAB employs the latter method with some
advanced guess of the starting point. For computing the values of the Lambert function
with arbitrary precision, we refer to the recent paper [14].

(b) Using a different approach, the property (i) of Theorem 1 was also discussed in
[21].

In the sequel, we clarify ordering of the real as well as imaginary parts of the
particular branches of the Lambert function. This ordering may be useful in a deeper
asymptotic analysis of (1), and, moreover, results into an alternate proof of Lemma 1.

Following the proof of Theorem 1, we introduce the functions

Gz(x, y) = x sin(y) + y cos(y) − |z| sin(Arg(z)) exp(−x) and

fz(x) =
√

|z|2 exp(−2x) − x2.

In view of (15) and (18), the couples (xk, yk), where xk = �(Wk(z)), yk = �(Wk(z)),
have to meet the relations Gz(x, y) = 0 and y = ± fz(x), respectively.

The following assertion specifies ordering of imaginary parts of the branches of the
Lambert function.

Lemma 2 Let z ∈ C \ {0}. Then �(Wk(z)) ≤ �(Wk+1(z)) for all k ∈ Z. In fact, all
the inequalities are strict with the only exception: If z ∈ [− exp(−1), 0), then we have
�(W−1(z)) = �(W0(z)) = 0.

Proof For the sake of formal simplicity, we identify complex numbers w = x + i y
with couples (x, y) ∈ R2. First, let z ∈ C \ {0} be such that 0 ≤ Arg(z) ≤ π and
define sets Szj , j ∈ Z, as

Szj = {(x, y) ∈ R2 : Gz(x, y) = 0, (2 j − 1)π < y < (2 j + 1)π} for j = 1, 2, . . . ;
Szj = {(x, y) ∈ R2 : Gz(x, y) = 0, 0 ≤ y < π} for j = 0;
Szj = {(x, y) ∈ R2 : Gz(x, y) = 0, −2π < y ≤ 0} for j = −1;
Szj = {(x, y) ∈ R2 : Gz(x, y) = 0, 2 jπ < y < (2 j + 2)π} for j = −2, −3, . . .

(note that the equationGz(x, y) = 0 has no solution for y = (2 j−1)π , j = 1, 2, . . . ,
and for y = 2 jπ , j = −1,−2, . . . ). We wish to show that Szj is a part of the range of
Wk just when j = k.

Let k ≥ 1 be arbitrary. Then, by the definition of Wk (see also Sect. 2),

(2k − 2)π < yk < (2k + 1)π. (23)

Let j be such that (xk, yk) ∈ Szj . We distinguish the following cases with respect to j .
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If j > k, then yk > (2k + 1)π which contradicts (23). Let j = k. The ranges of
Wk and Wk+1, k = 0, 1, . . . , are separated by the curve

γk = {(u, v) ∈ R2 : u = −v cot(v), 2kπ < v < (2k + 1)π}

(see Sect. 2). The equation Gz(x, y) = 0, (2k − 1)π < y < (2k + 1)π , is equivalent
to

x = −y cot(y) + |z| sin(Arg(z)) exp(−x) (24)

provided y 
= 2kπ . To estimate the y-coordinate of a point (x, y) ∈ Szk , we put u = x
in γk .

First, let 2kπ < y < (2k + 1)π . Then any point (x, y) of Szk together with the
corresponding point (x, v) of γk have to fulfill the formula

y cot(y) − v cot(v) = |z| sin(Arg(z))
sin(y)

exp(−x) (25)

due to x = −v cot(v) and (24). Since 0 ≤ Arg(z) ≤ π , the right-hand side of (25) is
non-negative, hence, we have y cot(y) ≥ v cot(v) implying y ≤ v. In other words, any
point (x, y) ∈ Szk is located below or on the curve γk separatingWk andWk+1. Second,
let (2k −1)π < y ≤ 2kπ . Then the points (x, y) ∈ Szk lie below γk trivially (note that
the equation Gz(x, y) = 0 has a unique solution x for y = 2kπ , 0 < Arg(z) < π ,
and has no solution for y = 2kπ , Arg(z) = 0 or Arg(z) = π ). On the other hand, any
point of Szk lies above the upper bound (2k − 1)π of γk−1, hence, we have proven that
Szk is contained in the range of Wk .

Finally, if j < k, then we can similarly verify that any point of Szj is already located
below or on γk−1. Thus, to summarize the previous observations, Szj is contained in
the range of Wk (k = 1, 2, . . . ) just when j = k; otherwise, Szj and the range of Wk

are disjoint. Consequently, (2k − 1)π < yk < (2k + 1)π , hence, yk < yk+1 for all
k = 1, 2, . . ..

The same line of arguments can be used in the case k ≤ −1 to obtain 2kπ <

yk < (2k + 2)π , and, in the remaining case k = 0, to obtain 0 ≤ y0 < π (and
therefore, y0 < y1). In this respect, a real z is mapped by W0 to γ0 (hence, y0 > 0)
if z < − exp(−1), and is mapped by W0 to reals if z ≥ − exp(−1) (hence, y0 = 0).
Also W−1 takes real values just when − exp(−1) ≤ z < 0 (hence, y−1 = y0 = 0).

The procedure can be analogously applied to the case−π < Arg(z) < 0 (definition
of the sets Szj now differ by shifting the particular y-domains vertically down by
π ). �

Lemma 2 is useful also for ordering of the real parts of the branches of the Lambert
function. In particular, it enables to prove the classical assertion of Lemma 1 in a more
lucid way compared to the existing proof techniques.

Proof of Lemma 1 We recall that the couple (xk, yk), k ∈ Z, satisfies |y| = fz(x), see
the text preceding Lemma 2. Put ζ1 = W−1(−|z|), ζ2 = W0(−|z|), ζ3 = W0(|z|).
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Then, we can easily observe that fz is defined on (−∞, ζ3] and (−∞, ζ1] ∪ [ζ2, ζ3] if
|z| ≥ exp(−1) and 0 < |z| < exp(−1), respectively. Moreover, fz has a (unique) root
ζ3 > 0 if |z| > exp(−1), a couple of roots ζ1 = ζ2 = −1 and ζ3 > 1 if |z| = exp(−1),
and a triple of roots ζ1 < −1, −1 < ζ2 < 0, ζ3 > 0 if 0 < |z| < exp(−1). Otherwise,
fz is positive at all other points of its domain.
Further, we have

f ′
z (x) = −|z|2 exp(−2x) − x√|z|2 exp(−2x) − x2

.

If |z| ≥
√
2
2 exp(−1/2), then f ′

z is negative, hence fz is decreasing on (−∞, ζ3). If√
2
2 exp(−1/2) > |z| > exp(−1), then fz has a local minimum at ζ4 = 1

2W−1(−2|z|2)
and a local maximum at ζ5 = 1

2W0(−2|z|2) (note that ζ4 < ζ5). Consequently, fz is
decreasing on (−∞, ζ4), increasing on (ζ4, ζ5) and again decreasing on (ζ5, ζ3).

If |z| = exp(−1), then fz is decreasing on (−∞,−1), increasing on (−1, ζ5)
and decreasing on (ζ5, ζ3). Finally, if exp(−1) > |z| > 0, then fz is decreasing on
(−∞, ζ1) increasing on (ζ2, ζ5) and decreasing on (ζ5, ζ3).

Thus, fz is decreasing on its domain up to “a small part” which is, however, lying
within the range of W0 (we again identify w = x + i y with (x, y) ∈ R2). Indeed, if√

2
2 exp(−1/2) > |z| > exp(−1), we have to show that the graph of fz between the
points [ζ4, fz(ζ4)] and [ζ5, fz(ζ5)] is contained in the range of W0. Since

ζ 2
4 + f 2z (ζ4) = −1

2
W−1(−2|z|) < 1 and ζ 2

5 + f 2z (ζ5) = −1

2
W0(−2|z|2) <

1

2

for any
√
2
2 exp(−1/2) > |z| > exp(−1), both the endpoints of the graph belong

to the range of W0 (note that the open unit disk is a part of the W0 range). Also,
if ζ4 ≤ x ≤ ζ5, then x2 + f 2z = |z| exp(−2x) is decreasing in x , hence, we have

|z| exp(−2x) < 1 for any ζ4 ≤ x ≤ ζ5 and any
√
2
2 exp(−1/2) > |z| > exp(−1)

meaning that the graph of the increasing part of fz is again lying in the range of W0.
Similarly, we can show that, for exp(−1) ≥ |z| > 0, the graph of fz between the

relevant points is contained in the range of W0 as well.
Collecting the abovemonotony properties together with Lemma 2, we can conclude

that x±(k+1) < x±k for any k = 1, 2, . . .. If k = 0, we have x1 < x0 but x−1 ≤ x0
because of W0(z) = W−1(z) for any z ∈ R, z ≤ − exp(−1). �
Remark 3 We have actually proven monotony of the real parts of Wk(z) with respect
to k which is a slightly stronger result than that stated in Lemma 1.

4 Applications towards qualitative properties of (1) with the Caputo
derivative

In this section, we apply our previous observations on the principal branch of the
Lambert function to describe important qualitative properties of (1), including their
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Fig. 1 The set α,τ
0 as the stability region for (1) (the figure corresponds to α = 1.2)

dependence on the parameter λ. We remind that here we restrict ourselves to the case
α > 1 due to the reason mentioned in Remark 1.

We start with a basic stability criterion for (1). We introduce a (parametric) setα,τ
0

given as


α,τ
0 =

{
z ∈ C : |z| <

( |Arg(z)| − απ/2

τ

)α

, |Arg(z)| >
απ

2

}
, (26)

see Fig. 1. This set already appeared in [6, Thm. 2] as the asymptotic stability region
for (1) with 0 < α < 1. As indicated in [7], the D-subdivisionmethod (combined with
some tools of fractional calculus) used in [6] is extendable also to the caseα > 1. In the
following assertion, we confirm validity of this stability result for α > 1. Contrary to
the existing techniques, we are able to prove this result (as a consequence of Theorem
1(i)) in an almost elementary way.

Theorem 2 Let α > 1, τ > 0 and λ ∈ C. Then (1) is asymptotically stable if and only
if λ ∈ 

α,τ
0 .

Proof By (9) and Lemma 1, we need to analyze�(s0) = α
τ
�(

W0
(

τ
α
λ1/α

))
< 0. Using

(10) with z = τλ1/α/α and p = 0, this inequality can be converted into

∣∣∣
τ

α
λ

1
α

∣∣∣ + π

2
<

∣∣∣Arg(λ
1
α )

∣∣∣ ,

i.e.,

τ

α
|λ| 1α <

∣∣∣Arg(λ
1
α )

∣∣∣ − π

2
.
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Taking into account
∣∣Arg(λ1/α)

∣∣ = 1
α

|Arg(λ)|, this is equivalent to the condition
defining 

α,τ
0 in (26). �

Remark 4 If λ ∈ ∂
α,τ
0 , then (1) is stable but not asymptotically stable. If λ /∈ clα,τ

0 ,
then (1) is unstable. Obviously, α,τ

0 becomes empty for any α ≥ 2, hence, (1) cannot
be asymptotically stable for any complex λ whenever α ≥ 2.

Theorem 1 can be used in a more subtle way to bring a deeper insight into behavior
of (1). More precisely, relations (10)–(13) enable to reveal a relationship between the
position of the rightmost characteristic root s0 and the value of λ. Then, by (6), such
a relationship easily results into a precise asymptotic description of the solutions of
(1) in the unstable case (�(s0) > 0). Indeed, while in the asymptotically stable case
(�(s0) < 0) the decay rate of solutions is algebraic and independent of the particular
value of s0, in the unstable case (�(s0) > 0), the growth rate is exponential and
governed by the real part of the rightmost characteristic root s0 (it is well known that
this is true also for integer values of α). In addition, the imaginary part of s0 is related
to the frequency characteristics describing an oscillatory behavior of (1).

Thus, for given u, v ≥ 0, we need to find a region of all complex λ such that the
rightmost characteristic root s0 is lying on or left to the line u + iω, ω ∈ R, and on or
above (below) the line ω + i v (the line ω − i v), ω ∈ R. On this account, similarly as
in the proof of Theorem 2, we put z = τλ1/α/α, p = τu/α, q = τv/α and consider
u ≥ 0, απ/τ > v > 0. Then, Theorem 1 immediately implies that

(i) �(s0) ≤ u if and only if either

|λ| < uα exp(τu) (27)

or

|λ| ≥ uα exp(τu) and α arccos

(
u exp(τu/α)

|λ|1/α
)

+ τ
√|λ|2/α − u2 exp(2τu/α)

exp(τu/α)

≤ |Arg(λ)| ; (28)

(ii) |�(s0)| ≥ v if and only if

|Arg(λ)| > τv/α and
vα

sinα
(
(|Arg(λ)| − τv)/α

)

× exp
(
τv cot

(
(|Arg(λ)| − τv)/α

)) ≤ |λ|. (29)

Thus, if we introduce the set 
α,τ

u as a set of all λ ∈ C such that either (27) or
(28) holds, and �

α,τ

v as a set of all λ ∈ C such that (29) holds (we put �
α,τ

v = ∅
for απ/τ ≤ v < π and �

α,τ

v = C for v = 0), then we can rewrite our previous
observations into the following assertion:

Lemma 3 Let α > 1, τ > 0, u ≥ 0, π > v ≥ 0, λ ∈ C and let s0 be given by (9).
Then
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(i) �(s0) ≤ u if and only if λ ∈ 
α,τ

u ;
(ii) |�(s0)| ≥ v if and only if λ ∈ �

α,τ

v (�
α,τ

v is non-empty whenever 0 ≤ v < απ/τ ).

Remark 5 (a) The set
α,τ

u contains the origin (λ = 0)which is excluded byTheorem1.
However, admitting λ = 0, we have the only characteristic root s0 = 0 of (2), hence,
Lemma 3 remains true.

(b) It is easy to check that α,τ
0 introduced in (26) coincides with int

α,τ

0 .

The part (i) of Lemma 3 immediately implies

Corollary 1 Let u ≥ 0 be fixed. Then 
α,τ

u is the set of all λ ∈ C such that x(t) =
O(exp(ut)) as t → ∞ for any solution x of (1).

To obtain an actually effective (and non-improvable) asymptotic result for the solu-
tions of (1), we have to look at the problem inversely. More precisely, for a given
complex λ /∈ 

α,τ
0 , we need to find (non-negative) real values u0, v0 such that the

rightmost root s0 of (2) satisfies �(s0) = u0, |�(s0)| = v0.
The way how to do it easily follows from Theorems 1(ii) and 1(iv), respectively,

taking into account the above introduced substitutions z = τλ1/α/α, p = τu/α,
q = τv/α. Then the corresponding relations (11) and (13) become

|λ| ≥ uα exp(τu) and α arccos

(
u exp(τu/α)

|λ|1/α
)

+ τ
√|λ|2/α − u2 exp(2τu/α)

exp(τu/α)

= |Arg(λ)| (30)

and

|Arg(λ)| > τv/α and
vα

sinα
(
(|Arg(λ)| − τv)/α

) exp
(
τv cot

(
(|Arg(λ)| − τv)/α

))

= |λ|, (31)

respectively (see also (28) and (29)). Thus, the unique solution of (30)2 defines the
value u0, while the unique positive solution of (31)2 defines the value v0 (provided
Arg(λ) > 0). If Arg(λ) = 0, then s0 is real, and we set v0 = 0.

Notice that (30)2, defining the relation between the modulus and argument of λ

that is explicit with respect to the argument, forms the boundary of 
α,τ

u . Its left-
hand side, considered as a function of |λ|, is continuous, increasing and unbounded on
[uα exp(τu),∞), and its graph in the complex plane creates a Jordan curve symmetric
with respect to the real axis, see Fig. 2.

Similarly, (31)2 provides the relation between the modulus and argument of λ that
is explicit with respect to the modulus. The equality (31)2 is the boundary of�

α,τ

v , and
its left-hand side, as a function of |Arg(λ)|, is continuous on (τv/α, π ] and unbounded
in a right neighborhood of the point τv/α (for |Arg(λ)| = π , it takes a value on the
negative real axis). This implies that �

α,τ

v is unbounded for any 0 < v < απ/τ and
its boundary splits the complex plane into two parts, see Fig. 2.

Now we are in a position to formulate a complete asymptotic description for the
solutions of (1).
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Fig. 2 The figure depicts the boundaries of the sets 
α,τ
u (blue) and �

α,τ
v (orange) for several values of u

and v, respectively (the scenario corresponds to α = 1.2 and τ = 1). The particular blue curves represent
the set of all λ ∈ C such that the rightmost characteristic root s0 of (2) satisfies�(s0) = u, and the particular
orange curves represent the set of all λ ∈ C such that the rightmost characteristic root s0 of (2) satisfies
|�(s0)| = v. As an example, the blueish curvilinear rectangles then represent the set of all λ ∈ C such that
0.5 < �(s0) < 0.75 and 1.25 < |�(s0)| < 1.5

Theorem 3 Let α > 1, τ > 0 and λ ∈ C.

(i) If λ ∈ 
α,τ
0 , then, for any solution x of (1),

x(t) = O(t1−α) as t → ∞.

Moreover the algebraic decay order 1 − α cannot be improved;
(ii) If λ /∈ 

α,τ
0 , then, for any solution x of (1),

x(t) = exp(u0t)(c exp(i v0t) + o(1)) as t → ∞

where c is a complex constant, u0 ≥ 0 is the unique solution of (30)2, v0 > 0 is
the unique solution of (31)2 if |Arg(λ)| > 0, and v0 = 0 if Arg(λ) = 0.

Proof (i) The property is a direct consequence of (6) as the set S is empty.
(ii) Let s0 = u0 + i v0 be the rightmost characteristic root, and S0 be the set of

the remaining characteristic roots s with a non-negative real part (we remind that
�(s) < �(s0) for any s ∈ S0). Then, if α is a non-integer, we can write (6) as

x(t) = exp(u0t)
(
c exp(i v0t) +

∑

s∈S0
cs exp((s − u0)t

) + O(t1−α)

= exp(u0t)
(
c exp(i v0t) + o(1) + O(o(1))

) = exp(u0t)
(
c exp(i v0t) + o(1)

)
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as t → ∞,

where c = cs0 is the complex constant from (6) corresponding to the rightmost charac-
teristic root s0. If α is an integer, then the dominating role of s0 in asymptotic behavior
of (1) is well known. In this case, the assertion of (ii) holds as well. �
Remark 6 (a) The asymptotic formula from Theorem 3(ii) immediately implies

x(t) = O(exp(u0t)) as t → ∞ (32)

for any solution x of (1), and the constant u0 is non-improvable. Moreover, for large t ,
the roots of the real and imaginary parts of x tend to the roots of cos(v0t) and sin(v0t),
respectively. In both the cases, the distance between the subsequent roots tends to
π/v0. These properties are illustrated by Example 1.

(b) The asymptotic behavior of (1) significantly depends on stability of (1). In
particular, the exponential terms in (6) are vanishing in the asymptotically stable
case �(s0) < 0. However, the situation changes in the limit case α = 1 when, in
accordance with the first-order theory, the rightmost characteristic root s0 determines
an exponential decay rate of the solutions also in the asymptotically stable case. Since
the above argumentation can be extended to this problem as well, our results provide
a contribution also to the corresponding classical first-order theory.

Example 1 Let α = 1.2, τ = 1, and consider (1) along with the initial conditions
φ(t) = 1 (−1 ≤ t ≤ 0), φ0 = φ(0) = 1, and φ1 = limt→0+ x ′(t) = 0. We compare
the corresponding (numerical) solutions of (1) for two distinct values of λ, namely
λ1 = −2 + i and λ2 = −3 + i 0.1. As indicated by Fig. 2, both the values λ1, λ2 lie
in the instability region. In particular, the real parts u0 of the corresponding rightmost
roots are approximately 0.4721 and 0.4917, and their imaginary parts v0 are 1.2321
and 1.5844, respectively.

The real parts of the solutions of (1) with two above specified sets of entries, along
with the growth-rate functions exp(u0t), are depicted in Figs. 3 and 4. The graphs
suggest that the modulus of constant c introduced in Theorem 3(ii) is less than one for
λ = λ1, and greater than one for λ = λ2.

To illustrate behavior of the solutions x in better detail, Figs. 5 and 6 depict the ratio
�(x(t))/ exp(u0t) for λ1 and λ2, respectively. The resulting functions are bounded,
but do not tend to zero which is a consequence of non-improvability of the constant
u0 in (32).

Asmentioned in Remark 6(a), the distance between the subsequent roots of�(x(t))
tends to π/v0. Figs. 7 and 8 illustrate this fact. We can see that while in the case of λ1
the convergence is rather fast and the distance seems to be somewhat stabilized around
the seventh root, in the case of λ2, the stabilization occurs around the hundredth root.

5 Concluding remarks

The aim of the paper was to develop the Lambert function theory, and then apply the
obtained results in qualitative investigations of (1). Using this approach, we were able
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Fig. 3 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ1 = −2 + i, along with the
corresponding growth-rate functions ± exp(0.4721t)

Fig. 4 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ2 = −3 + i 0.1, along with the
corresponding growth-rate functions ± exp(0.4917t)

to formulate a precise asymptotic description of the solutions of (1). Particularly, in
addition to an algebraic decay rate of the solutions in the stable case (described in
some earlier papers), we could observe an exponential growth of the solutions in the
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Fig. 5 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ1 = −2+ i, divided by its growth-rate
function exp(0.4721t)

Fig. 6 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ2 = −3 + i 0.1, divided by its
growth-rate function exp(0.4917t)

unstable case; the rate of this growth was determined as a (unique) real root of an
auxiliary transcendental equation.
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Fig. 7 The distance between the subsequent roots of�(x(t)) for α = 1.2, τ = 1 and λ1 = −2+ i is tending
to π/1.2321

Fig. 8 The distance between the subsequent roots of �(x(t)) for α = 1.2, τ = 1 and λ2 = −3 + i 0.1 is
tending to π/1.5844

However, the impact of the presented results is not limited to the theory of FDDEs
only. Our approach offers an alternate way how to prove (and also strengthen) some
classical assertions of the Lambert function theory.Moreover, to the best of our knowl-
edge, the derived asymptotic formulae are new also in the first-order case. Here,
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contrary to the fractional case, our results can be applied also in the stable case where
a (non-improvable) rate of exponential decay of the solutions can be determined.

Since we have formulated our results for (1) with a complex coefficient λ, their
extension to the vector case is nearly straightforward provided the eigenvalues of
a (real) system matrix are simple. Regarding eigenvalues with higher multiplicities,
some additional argumentation seems to be necessary.Based on related cases discussed
in earlier papers, one can expect a slight modification of the solutions growth, but no
impact on the asymptotic frequency.

Our final remark concerns the case 0 < α < 1 not involved among the assumptions
of the assertions of Sect. 4. The procedure of computing the characteristic roots uses
the law of exponents which is, in general, not valid for complex numbers. Thus,
some superfluous roots of the characteristic equation may appear if 0 < α < 1 (as
illustrated via a counterexample in Remark 1). In this case, our stability and asymptotic
formulae remain basically true, but we cannot confirm their strictness. In particular,
we cannot claim that the above described rate of exponential growth of solutions is
non-improvable. Nevertheless, we conjecture that a more thorough analysis of the
corresponding branches of a complex power can overcome this problem, and thus
achieve the strict asymptotic results for all α > 0. Such an analysis provides another
possible topic for the next research.
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Appendix E

Paper on lower-order two-term
FDDE [13] (AMC, 2017)

Fairly soon after entering the field of fractional delay equations, we began to deal
with linear equations involving fractional derivative, delayed term and also an unde-
layed one. The addition of the undelayed term brings significant technical challenges,
even in scalar case, which we first addressed in [13] (co-authors: J. Čermák, Z. Došlá;
my author’s share 45 %).

We derived explicit necessary and sufficient conditions for asymptotic stability,
including asymptotic formulas for solutions (including algebraic decay rate towards
zero). To achieve this, we further developed our inverse Laplace transform technique
and introduced a broad family of functions containing exponentials, Mittag-Leffler
functions and generalized delay exponential of Mittag-Leffler type as special cases.

Although the stability region in space of equation’s coefficients appears simple,
it comprises a region of delay-independent stability and region where the stability
boundary depends on the delay. This work marked my first direct encounter with
the phenomenon of stability switching, where the stability property changes with
increasing delay. In this case, it meant just a one-time loss of stability, but in
subsequent research, much richer situations awaited us.
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Due to licensing restrictions, the full text of [13] is not included in the publicly
accessible part of this habilitation thesis.



Appendix F

Paper on lower-order complex
two-term FDDE [11] (CNSNS, 2019)

The paper [11] (co-author: J. Čermák; my author’s share 50 %) was a reaction on
our growing interest in the phenomenon of stability switches. We decided to study a
planar FDDS with three real entries, which can be transformed into a fractional gen-
eralization of the first-order delay differential equation with an imaginary coefficient
by an undelayed term. This type of classical system is known to switch stability on
and off with increasing time delay.

In this paper, we conducted a detailed analysis of stability switching, including
conditions for its appearance, number, and exact calculations of stability switches.
We discovered rich behaviour not present in the original first-order equation, such
as different switching patterns starting from instability or stability for small delays
and the presence of a delay-independent stability region.

The biggest challenge was the derivation of explicit form of the stability bound-
ary, which is no longer given by a continuous parametric curve but by a union of
segments from infinitely many parametric curves. Additionally, we explored how the
stability boundary transitions with increasing order of the derivative, from a union
of transcendental curves (for derivative orders less than one) to the known shape for
first-order equations.
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Due to licensing restrictions, the full text of [11] is not included in the publicly
accessible part of this habilitation thesis.



Appendix G

Paper on higher-order two-term
FDDE [12] (CNSNS, 2023)

Previously in [13], we studied two-term FDDE of orders less than one. It is known
that the stability regions for first and second-order equations are qualitatively very
different, in this case a connected unbounded set with a boundary formed by a line
and a transcendental curve, in contrast to infinitely many touching triangles. Thus,
in [12] (co-author: J. Čermák; my author’s share 50 %), we aimed to describe the
transition between first-order and second-order two-term equations and perform a
comprehensive analysis of the expected stability switches.

Building on our previous experience and the proving techniques developed in
earlier works, we described the region of delay-independent stability, the stability
boundary, and provided a detailed analysis of stability switches. All of that in the
explicit form. We included all necessary details for precise calculations of their
number and values, which were then applied on the stabilization and destabilization
of fractional oscillators. The equation studied in this paper represents the simplest
case of real-valued problem where such a rich stability properties occur.
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Due to licensing restrictions, the full text of [12] is not included in the publicly
accessible part of this habilitation thesis.
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