Informace o publikaci

New Dubrovin-type integrability theory applications of differential rings

Autoři

ARTEMOVYCH Orest BLACKMORE Denis L. KYCIA Radoslaw Antoni PRYKARPATSKI Anatolij K.

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Contemporary Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.ams.org/books/conm/789/
Doi http://dx.doi.org/10.1090/conm/789/15838
Klíčová slova differential geometry, differential algebra, differential equations, covering mappings, differential ideals
Popis We present a new and effective approach to studying differentialalgebraic relationships by means of specially constructed finitely-generated invariant subrings in differential rings. Based on their properties, we reanalyzed the Dubrovin integrability criterion for the Riemann type differentialfunctional constraints, perturbed by means of some elements from a suitably constructed differential ring. We also studied invariant finitely-generated ideals naturally related with constraints, generated by the corresponding Liealgebraic endomorphic representations of derivations on differential ideals and which are equivalent to the corresponding differential-functional relationships on a generating function. The work in part generalizes the results devised before for proving integrability of the well known generalized hierarchy of the Riemann.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info