Informace o publikaci

Second Order Symmetries of the Conformal Laplacian

Logo poskytovatele
Autoři

ŠILHAN Josef MICHEL Jean-Philippe RADOUX Fabian

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Symmetry, Integrability and Geometry: Methods and Applications
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.3842/SIGMA.2014.016
Obor Obecná matematika
Klíčová slova Laplacian; quantization; conformal geometry; separation of variables
Popis Let (M;g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M;g), which are given by dif ferential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info