Informace o publikaci

Kernel Regression Model with Correlated Errors

Autoři

LAJDOVÁ Dagmar KOLÁČEK Jan HOROVÁ Ivanka

Rok publikování 2013
Druh Konferenční abstrakty
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis Kernel regression is one of the commonly used nonparametric methods for an estimation of a regression function. Nevertheless, there is a problem of choosing the value of the smoothing parameter, the bandwidth. In the case of independent observations the literature on the bandwidth selection is quite extensive. However, these standard methods, like cross-validation, perform badly when the errors are correlated. There are several possibilities how to overcome this. We will present and compare the partitioned cross-validation method and the plug-in method.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info