Informace o publikaci

New extension phenomena for solutions of tangential Cauchy-Riemann equations

Autoři

KOSSOVSKIY Ilya LAMEL Bernhard LAMEL B.

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Communications in Partial Differential Equations
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1080/03605302.2016.1180536
Obor Obecná matematika
Klíčová slova holomorphic maps; CR-functions
Popis In our recent work, we showed that smooth CR-diffeomorphisms of real-analytic Levi-nonflat hypersurfaces in C^2 are not analytic in general. This result raised again the question on the nature of CR-maps of real-analytic hypersurfaces. In this paper, we give a complete picture of what CR-maps actually are. First, we discover an analytic continuation phenomenon for CR-dieomorphisms which we call the sectorial analyticity property. It appears to be the optimal regularity property for CR-dieomorphisms in general. We emphasize that such type of extension never appeared previously in the literature. Second, we introduce the class of Fuchsian type hypersurfaces and prove that (innitesimal generators of) CR-automorphisms of a Fuchsian type hypersurface are still analytic. In particular, this solves a problem formulated earlier by Shafikov and the first author. Finally, we prove a regularity result for formal CR-automorphisms of Fuchsian type hypersursufaces.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info