Informace o publikaci

Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques

Autoři

PELÁNEK Radek

Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj User Modeling and User-Adapted Interaction
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/article/10.1007/s11257-017-9193-2
Doi http://dx.doi.org/10.1007/s11257-017-9193-2
Obor Informatika
Klíčová slova learner modeling; evaluation; adaptive learning
Popis Learner modeling is a basis of personalized, adaptive learning. The research literature provides a wide range of modeling approaches, but it does not provide guidance for choosing a model suitable for a particular situation. We provide a systematic and up-to-date overview of current approaches to tracing learners' knowledge and skill across interaction with multiple items, focusing in particular on the widely used Bayesian knowledge tracing and logistic models. We discuss factors that influence the choice of a model and highlight the importance of the learner modeling context: models are used for different purposes and deal with different types of learning processes. We also consider methodological issues in the evaluation of learner models and their relation to the modeling context. Overall, the overview provides basic guidelines for both researchers and practitioners and identifies areas that require further clarification in future research.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info