Informace o publikaci

Conditional Value-at-Risk for Reachability and Mean Payoff in Markov Decision Processes

Logo poskytovatele
Autoři

KŘETÍNSKÝ Jan MEGGENDORFER Tobias

Rok publikování 2018
Druh Článek ve sborníku
Konference Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '18)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1145/3209108.3209176
Klíčová slova conditional value-at-risk; Markov chains; Markov decision processes; reachability; mean-payoff
Popis We present the conditional value-at-risk (CVaR) in the context of Markov chains and Markov decision processes with reachability and mean-payoff objectives. CVaR quantifies risk by means of the expectation of the worst p-quantile. As such it can be used to design risk-averse systems. We consider not only CVaR constraints, but also introduce their conjunction with expectation constraints and quantile constraints (value-at-risk, VaR). We derive lower and upper bounds on the computational complexity of the respective decision problems and characterize the structure of the strategies in terms of memory and randomization.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info