Informace o publikaci

Finitely Forcible Graphons with an Almost Arbitrary Structure

Autoři

KRÁĽ Daniel LOVASZ Laszlo M. NOEL Jonathan A. SOSNOVEC Jakub

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Discrete Analysis
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.19086/da.12058
Doi http://dx.doi.org/10.19086/da.12058
Klíčová slova graph limits; finite forcibility
Popis Graphons are analytic objects representing convergent sequences of large graphs. A graphon is said to be finitely forcible if it is determined by finitely many subgraph densities, i.e., if the asymptotic structure of graphs represented by such a graphon depends only on finitely many density constraints. Such graphons appear in various scenarios, particularly in extremal combinatorics. Lovasz and Szegedy conjectured that all finitely forcible graphons possess a simple structure. This was disproved in a strong sense by Cooper, Kral' and Martins, who showed that any graphon is a subgraphon of a finitely forcible graphon. We strengthen this result by showing for every epsilon > 0 that any graphon spans a 1- epsilon proportion of a finitely forcible graphon.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info