Informace o publikaci

Labeling planar graphs with a condition at distance two

Autoři

BELLA P KRÁĽ Daniel MOHAR B QUITTNEROVA K

Rok publikování 2007
Druh Článek v odborném periodiku
Časopis / Zdroj European Journal of Combinatorics
Citace
Doi http://dx.doi.org/10.1016/j.ejc.2007.04.019
Popis An L(2, 1)-labeling of a graph is a mapping c : V(G) -> (0,..., K) such that the labels assigned to neighboring vertices differ by at least 2 and the labels of vertices at distance two are different. The smallest K for which an L(2, 1)-labeling of a graph G exists is denoted by lambda(2, 1) (G). Griggs and Yeh [J.R. Griggs, R.K. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595] conjectured that lambda(2, 1)(G) <= 32 for every graph G with maximum degree Delta >= 2. We prove the conjecture for planar graphs with maximum degree Delta not equal 3. All our results also generalize to the list-coloring setting. (C) 2007 Elsevier Ltd. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info