Informace o publikaci

Tough spiders

Autoři

KAISER T KRÁĽ Daniel STACHO L

Rok publikování 2007
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Graph Theory
Citace
Doi http://dx.doi.org/10.1002/jgt.20244
Klíčová slova hamilton cycles; toughness; interval graphs; split graphs; matroids
Popis Spider graphs are the intersection graphs of subtrees of subdivisions of stars. Thus, spider graphs are chordal graphs that form a common superclass of interval and split graphs. Motivated by previous results on the existence of Hamilton cycles in interval, split and chordal graphs, we show that every 3/2-tough spider graph is hamiltonian. The obtained bound is best possible since there are (3/2 - epsilon)-tough spider graphs that do not contain a Hamilton cycle. (C) 2007 Wiley Periodicals.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info