Informace o publikaci

Lessons learnt from developing visual analytics applications for adaptive prostate cancer radiotherapy

Autoři

RAIDOU Renata Georgia FURMANOVÁ Katarína GROSSMANN Nicolas CASARES-MAGAZ Oscar MOISEENKO Vitali EINCK John P GRÖLLER Eduard MUREN Ludvig P

Rok publikování 2020
Druh Článek ve sborníku
Konference VisGap - The Gap between Visualization Research and Visualization Software
Citace
www https://diglib.eg.org/handle/10.2312/visgap20201110
Doi http://dx.doi.org/10.2312/visgap.20201110
Klíčová slova visual analytics; radiotherapy
Popis In radiotherapy (RT), changes in patient anatomy throughout the treatment period might lead to deviations between planned and delivered dose, resulting in inadequate tumor coverage and/or overradiation of healthy tissues. Adapting the treatment to account for anatomical changes is anticipated to enable higher precision and less toxicity to healthy tissues. Corresponding tools for the in-depth exploration and analysis of available clinical cohort data were not available before our work. In this paper, we discuss our on-going process of introducing visual analytics to the domain of adaptive RT for prostate cancer. This has been done through the design of three visual analytics applications, built for clinical researchers working on the deployment of robust RT treatment strategies. We focus on describing our iterative design process, and we discuss the lessons learnt from our fruitful collaboration with clinical domain experts and industry, interested in integrating our prototypes into their workflow.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info