Informace o publikaci

Detection of Malicious Network Traffic Behavior Using JA3 Fingerprints

Autoři

NOVÁK Pavel OUJEZSKÝ Václav

Rok publikování 2022
Druh Článek ve sborníku
Konference Proceedings II of the 28th Conference STUDENT EEICT 2022
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_2_v2.pdf
Doi http://dx.doi.org/10.13164/eeict.2022.194
Klíčová slova clustering; detection; JA3; JA3s; malware
Popis This paper presents a novel approach for classifying spoof network traffic based on JA3 fingerprint clustering. In particular, it concerns the detection of so-called zero-day malware. The proposed method does not work with known JA3 hashes. However, it compares the JA3 fingerprint of captured traffic with JA3 fingerprints of traffic with predefined criteria, such as the use of current cipher suites or protocol, for classification.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info