Informace o publikaci

Source Code Metrics for Software Defects Prediction

Logo poskytovatele
Autoři

REBRO Dominik Arne ROSSI Bruno CHREN Stanislav

Rok publikování 2023
Druh Článek ve sborníku
Konference The 38th ACM/SIGAPP Symposium on Applied Computing (SAC '23)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1145/3555776.3577809
Klíčová slova Software Defect ; Software Metrics; Mining Software Repositories; Software Quality
Popis In current research, there are contrasting results about the applicability of software source code metrics as features for defect prediction models. The goal of the paper is to evaluate the adoption of software metrics in models for software defect prediction, identifying the impact of individual source code metrics. With an empirical study on 275 release versions of 39 Java projects mined from GitHub, we compute 12 software metrics and collect software defect information. We train and compare three defect classification models. The results across all projects indicate that Decision Tree (DT) and Random Forest (RF) classifiers show the best results. Among the highest-performing individual metrics are NOC, NPA, DIT, and LCOM5. While other metrics, such as CBO, do not bring significant improvements to the models.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info