Informace o publikaci

Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence

Autoři

MARVANOVÁ Soňa PĚNČÍKOVÁ Kateřina PÁLKOVÁ Lenka CIGANEK Miroslav PETRÁŠ Jiří LNĚNIČKOVÁ Anna VONDRÁČEK Jan MACHALA Miroslav

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Science of The Total Environment
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1016/j.scitotenv.2023.162924
Doi http://dx.doi.org/10.1016/j.scitotenv.2023.162924
Klíčová slova AhR activity; Airborne particulate matter; Freshwater sediments; Gap junctional intercellular communication; Polycyclic aromatic sulfur heterocyclic compounds
Popis Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM2.5) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM2.5 and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info