Informace o publikaci

About the classification of the holonomy algebras of lorentzian manifolds

Autoři

GALAEV Anton

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj SIBERIAN MATHEMATICAL JOURNAL
Citace
Doi http://dx.doi.org/10.1134/S0037446613050042
Klíčová slova holonomy algebra; Lorentzian manifold; Berger algebra; weak-Berger algebra; Tanaka prolongation
Popis The classification of the holonomy algebras of Lorentzian manifolds can be reduced to the classification of the irreducible subalgebras h aS, so(n) that are spanned by the images of linear maps from a"e (n) to h satisfying some identity similar to the Bianchi identity. Leistner found all these subalgebras and it turned out that the obtained list coincides with the list of irreducible holonomy algebras of Riemannian manifolds. The natural problem is to give a simple direct proof of this fact. We give such a proof for the case of semisimple not simple Lie algebras h.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info