Zde se nacházíte:
Informace o publikaci
Semilinear elliptic Schrödinger equations with singular potentials and absorption terms
Autoři | |
---|---|
Rok publikování | 2024 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of the London Mathematical Society |
Fakulta / Pracoviště MU | |
Citace | |
www | https://www.sciencedirect.com/science/article/pii/S0362546X23001955 |
Doi | http://dx.doi.org/10.1112/jlms.12844 |
Klíčová slova | Hardy potentials; Critical exponents; Source terms; Capacities; Measure data |
Popis | Let ??RN (N?3) be a C2 bounded domain and ??? be a compact, C2 submanifold without boundary, of dimension k with 0?k1, we show that problem (P) admits several critical exponents in the sense that singular solutions exist in the subcritical cases (i.e. p is smaller than a critical exponent) and singularities are removable in the supercritical cases (i.e. p is greater than a critical exponent). Finally, we establish various necessary and sufficient conditions expressed in terms of appropriate capacities for the solvability of (P). |
Související projekty: |