Informace o publikaci

Adjoint functor theorems for lax-idempotent pseudomonads

Autoři

ARKOR Nathanael Amariah DI LIBERTI Ivan LOREGIAN Fosco

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Theory and Applications of Categories
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://www.tac.mta.ca/tac/volumes/41/20/41-20abs.html
Klíčová slova adjoint functor theorem; relative adjunction; lax-idempotent pseudomonad; KZ-doctrine; free cocompletion; pseudodistributive law; 2-category; formal category theory
Popis For each pair of lax-idempotent pseudomonads R and I, for which I is locally fully faithful and R distributes over I, we establish an adjoint functor theorem, relating R-cocontinuity to adjointness relative to I. This provides a new perspective on the nature of adjoint functor theorems, which may be seen as methods to decompose adjointness into cocontinuity and relative adjointness. As special cases, we recover variants of the adjoint functor theorem of Freyd, the multiadjoint functor theorem of Diers, and the pluriadjoint functor theorem of Solian-Viswanathan, as well as the adjoint functor theorems for locally presentable categories. More generally, we recover enriched ?-adjoint functor theorems for weakly sound classes of weight ?.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info