Informace o publikaci

Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming

Autoři

BRIAŃSKI Marcin KOUTECKÝ Martin KRÁĽ Daniel PEKÁRKOVÁ Kristýna SCHRÖDER Felix

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj MATHEMATICAL PROGRAMMING
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/article/10.1007/s10107-023-02048-x
Doi http://dx.doi.org/10.1007/s10107-023-02048-x
Klíčová slova Integer programming; width parameters; matroids; Graver basis; tree-depth; fixed-parameter tractability
Popis An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the l_1-norm of the Graver basis is bounded by a function of the maximum l_1-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the l_1-norm of the Graver basis of the constraint matrix, when parameterized by the l_1-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info