Physics

Doctoral degree in full-time or combined form. The language of instruction is Czech.

The programme can be studied only as a single subject with a specialization (Astrophysics, Biophysics, Condensed Matter Physics, General Physics, Plasma Physics, Theoretical Physics or Wave and Particle Optics).

Submit an application

International applicants for doctoral study (Czech and Slovak Republics applicants NOT included)
Submission deadline until midnight 15 December 2025.

What will you learn?

The objective is to provide to talented Master's degree holders the possibility to continue their studies in the doctoral degree program Physics in such specializations which have excellent quality and traditions at the Faculty of Natural Sciences of MU and at cooperating institutions, mainly various institutes of the Czech Academy of Sciences. During his/her doctoral studies the student participates in research as a member of a research team, he/she usually partakes in objective financed research and is led in such a way as to become an independent researcher on concluding the doctoral program. Necessary conditions include the publication activity in prestigious international journals, active participation in meetings of scientific peers and usually a long-term stay abroad. This guarantees the ability to communicate with international research partners in English resp. other languages. Our aim is is to educate the students so that they are able to independently work at universities and research institutes in the Czech Republic as well as anywhere else in the world.

Career opportunities

The Physics PhD graduate becomes a member of a research team during the course of his/her studies, usually participates in objective-funded research and is led in such a way as to become an independent creative scientist. A long-term stay abroad is a common part of his/her studies and guarantees his/her ability to communicate in English and/or other languages with scientific peers. The graduate is able to do research and teach at universities and scientific research centers in the Czech Republic as well as anywhere else in the world. His/her knowledge, logical thinking, scientific world view and foreign language capabilities enable him/her to work in other areas as well: quantitative analyst, data scientist, consultant etc.

Admission requirements

Admission procedure
The admission interview is usually in an online form and consists of two parts:
1) expert interview – checking expertise background and motivation (max. 60 points),
2) Language part – check of communication skills in English, interview and expert discussion is in English (max. 40 points)

More information about admission process for international applicants in general can be found in the section Admission Process.

Date of the entrance exam
The applicants will receive information about the entrance exam by e-mail usually at least 10 days before the exam.
Please, always check your e-mails, including spam folders.

Conditions of admission
To be admitted, a candidate must obtain a total of 40 out of 60 points in the expert knowledge part and 20 out of 40 points in the language part.
Successful applicants are informed of their acceptance by e-mail and subsequently receive an invitation to the enrolment.

Programme capacity
The capacity of a given programme is not fixed; students are admitted based on a decision by the Doctoral Board after assessing their aptitude for study and motivation.

Deadlines

2 Jan – 15 Dec 2025

Submit your application during this period

Submit an application

Study options

Single-subject studies with specialization

In the single-subject studies, the student deepens knowledge in the concrete focus of the degree programme and chooses one specialization. The specialization is stated in the university diploma.

Submit an application

Dissertation topics

Specialization: Astrophysics

Detail study of selected multiple eclipsing systems
Supervisor: doc. RNDr. Miloslav Zejda, Ph.D.

Vícenásobně zákrytové hvězdné soustavy představují relativně novou třídu objektů, která se nabízí jako významný zdroj informací o hvězdných systémech. Jejich počet se rozrůstá, ale detailních studií jednotlivých systémů je dosud málo.

Cílem práce bude za pomoci vlastních pozorovacích dat (fotometrických i spektroskopických) doplněných o dostupná data z jiných zdrojů výpočet modelu zúčastněných dvojhvězd i jednotlivých komponent a určení jejich parametrů. Předpokládá se použití standardního softwarového balíčku PHOEBE, případně některého z ekvivalentních produktů. V závěru by měla být diskuze, porovnání s jinými detailními modely vícenásobně zákrytových soustav.

Práce bude vypracována v anglickém jazyce.

Supervisor

doc. RNDr. Miloslav Zejda, Ph.D.

Structured stellar winds
Supervisor: doc. RNDr. Jiří Kubát, CSc.

V současné době se považuje za prokázané, že hvězdné větry horkých hvězd jsou strukturované. Pro modelování této vlastnosti větrů se používá jednorozměrný popis pomocí parametru popisujícího poměr hustot strukturovaného a nestrukturovaného větru a řady dalších zjednodušujících předpokladů. Řešení přenosu záření pro třírozměrný model však ukázalo nutnost použití přesnějšího popisu prostředí. Hydrodynamické simulace nehomogenního prostředí mohou odpovědět na řadu otázek týkajících se struktury hvězdných větrů, zejména vznik a vývoj chuchvalců a hustotních pórů ve větrech, a pomoci zpřesnit určení míry ztráty hmoty, která je klíčovou vlastností ovlivňující hvězdný vývoj.
Cílem práce bude analýza časového vývoje nehomogenit a dalších jevů pomocí hydrodynamických a zářivě-hydrodynamických modelů za použití veřejně dostupných modelovacích kódů, jako jsou například MPI-AMRVAC nebo ATHENA.

Literatura
  • Hubeny, I., Mihalas, D., 2015, Theory of Stellar Atmospheres, Princeton University Press
  • Jiang, Y.-F., 2023, "Three Dimensional Natures of Massive Star Envelopes", Galaxies 11, 105
  • Keppens, R.; Popescu Braileanu, B.; Zhou, Y.; Ruan, W.; Xia, C.; Guo, Y.; Claes, N.; Bacchini, F., 2023, "MPI-AMRVAC 3.0: Updates to an open-source simulation framework", Astronomy and Astrophysics 673, A66
  • Lamers, H. J. G. L. M., Cassinelli, J. P., 1999, Introduction to Stellar Winds, Cambridge University Press
Supervisor

doc. RNDr. Jiří Kubát, CSc.

Study of gamma-ray bursts and kilonovae with current and future satellites
Supervisor: RNDr. Jakub Řípa, Ph.D.

Projekty GRBAlpha, VZLUSAT-2 a v blízké budoucnosti i GRBBeta jsou mise se silným zapojením skupiny astrofyziky vysokých energií na této univerzitě, která je kromě jiného také zodpovědná za analýzu a vědeckou interpretaci dat z těchto družic. Tyto družice demonstrují možnost využití nanodružic k monitorování a studiu extrémně energetických událostí ve vesmíru jakými jsou záblesky záření gama (GRB). Připravuje se též vypuštění nanodružic projektu HERMES-SP, na kterém se podílí i členové Masarykovy univerzity a očekává se aktivní zapojení do zpracování dat z těchto družic. Gama záblesky vznikají při kolapsu jader masivních hvězd na konci jejich života a při srážkách neutronových hvězd. Tyto nanodružice také detekují měkké gama záblesky pocházející z neutronových hvězd s velmi silným magnetickým polem tzv. magnetarů a ze slunečních erupcí. S tím úzce souvisí připravovaná česká mise QUVIK, která má jako primární cíl provádět fotometrická měření kilonov v ultrafialovém oboru, které doprovází typ GRB vznikajících při srážkách dvou neutronových hvězd a teoreticky i při roztrhání neutronové hvězdy černou dírou. Disertační práce bude zaměřena na různé aspekty analýzy pozorovaných družicových dat, simulací a obsluhy těchto družic, které jsou důležité k plnému využití vědeckého potenciálu těchto misí. Konkrétně bude práce zahrnovat následující témata. Vytvoření katalogu transientů záření gama detekovaných družicemi GRBAlpha a VZLUSAT-2 a publikace tohoto katalogu v impaktovaném mezinárodním astronomickém časopisu. Dále operování družic GRBAlpha, GRBBeta a redukce dat získaných z těchto nanodružic. Další téma bude analýza světelných křivek i spektrální analýza individuálních astrofyzikálně zajímavých gama záblesků. Příkladem takovýchto neobvyklých gama záblesků, které již GRBAlpha a VZLUSAT-2 pozorovali jsou extrémně jasné GRB 221009A a GRB 230307A. Ačkoliv dlouhá emise prvotního gama záření z GRB 230307A je obvyklá pro gama záblesky vzniklé kolapsem masivních hvězd, tak byla s tímto GRB pozorována asociovaná kilonova, která vzniká pouze při srážce kompaktních objektů, které zahrnují neutronovou hvězdu. Toto ukazuje, že gama záblesky stále přináší nová překvapení. Pokud výše zmíněné nanodružice detekují podobné neobvyklé gama záblesky, tak jejich studium bude velmi důležité k pochopení těchto extrémních jevů. Pozorování z výše zmíněných nanodružic je možné kombinovat s pozorováními z větších misí, jako je např. Fermi nebo Swift. V rámci vyvíjené družice QUVIK se bude studentka podílet na úkolech související s přípravou a činností vědeckého operačního centra této mise, za které je Masarykova univerzita zodpovědná. To bude zahrnovat pomoc s vývojem algoritmů, softwaru, simulací potřebných pro zpracování pozorování z této mise a aplikování různých metod pro optimalizaci pozorování. Plánována je také úzká spolupráce s misí ULTRASAT, jejímž cílem je též pozorování kilonov v ultrafialovém oboru, a podílení se na zpracování pozorování z této družice.

Supervisor

RNDr. Jakub Řípa, Ph.D.

Understanding the physics of hot galactic atmospheres
Supervisor: prof. Mgr. Norbert Werner, Ph.D.

Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres. The crucial role of these atmospheres for the formation and evolution of individual massive galaxies is just beginning to be appreciated. About half of the yet unseen warm-hot diffuse matter in the local Universe may lie in such extended galactic atmospheres, which are inextricably linked to their host galaxies through a complex story of accretion and feedback processes, such as energy and momentum input from supernovae, and jets and winds of accreting supermassive black holes, also called active galactic nuclei.
Using novel data analysis techniques, the student will explore X-ray data complemented by other multi-wavelength observations to study hot galactic atmospheres and their interaction with the central AGN.

Supervisor

prof. Mgr. Norbert Werner, Ph.D.

X-ray radiation of stellar atmospheres and winds
Supervisor: doc. RNDr. Jiří Kubát, CSc.

Velké množství horkých hvězd je zároveň zdrojem rentgenového záření. Rentgenová emise u dvojhvězdných interagujících systémů může vznikat při přenosu hmoty z jedné složky na druhou. Existuje však řada hvězd, které se jeví být osamocené. U těchto objektů není jasné, které fyzikální procesy dávají vzniknout rentgenovému záření. Navíc je rentgenová zářivost často proměnná. Příčina rentgenové emise osamocených hvězd je dosud stále zahalena rouškou tajemství.
Rentgenové záření má značný vliv na dynamiku zářením urychlovaného větru, kdy zvyšuje ionizaci prostředí, snižuje absorpční koeficient hmoty a tím snižuje i schopnost záření hmotu urychlovat.
Cílem práce bude přispět k pochopení mechanismů vzniku rentgenové emise v atmosférách a větrech horkých hvězd a pokusit se vytvořit nebo zpřesnit odpovídající model.

Literatura:
  • Hubeny, I., Mihalas, D., 2015, Theory of Stellar Atmospheres, Princeton University Press
  • Ignace, R., 2016, "Modeling X-ray emission line profiles from massive star winds - A review", Advances in Space Research, Volume 58, Issue 5, p. 694-709
  • Lamers, H. J. G. L. M., Cassinelli, J. P., 1999, Introduction to Stellar Winds, Cambridge University Press
  • Rauw, G., 2022, "X-ray emission of massive stars and their winds", in Handbook of X-ray and Gamma-ray Astrophysics, Edited by Cosimo Bambi and Andrea Santangelo, Springer Living Reference Work, ISBN: 978-981-16-4544-0, 2022, id.108.
Supervisor

doc. RNDr. Jiří Kubát, CSc.

Specialization: Biophysics

Protein Affinity and Selectivity to Cellular Membranes
Supervisor: prof. RNDr. Robert Vácha, PhD.

OBJECTIVES: The aim is to elucidate the relationship between protein sequence and preferred composition and curvature of human membranes,i.e., find peptide motifs that are selective to specific membranes in cells (plasma membrane, endoplasmic reticulum, Golgi apparatus, mitochondria, etc.). The obtained understanding will be used for the development of new protein biomarkers, sensors, scaffolds, and drugs.



DESCRIPTION: The control of biological membrane shape and composition is vital to eukaryotic life. Despite a continuous exchange of material, organelles maintain a precise combination and organization of membrane lipids, which is crucial for their function and the recruitment of many peripheral proteins. Membrane shape thus enables the cell to organize proteins and their functions in space and time, without which serious diseases can occur. Moreover, membrane curvature and lipid content can be specific to cancer cells, bacteria, and enveloped virus coatings, which could be utilized for selective targeting. We will develop a new method, using which we will elucidate the relationship between the protein sequence and the preferred membrane. The relationship will lay the foundations for the design of new protein motifs sensitive to membranes with a specific curvature and composition. Student(s) will master tools of computer simulations, in particular, molecular dynamics techniques and methods to calculate free energies. Moreover, he/she will learn the advantages and disadvantages of various protein and membrane parameterizations, including all-atom and coarse-grained models.



EXAMPLES of potential projects: * Determination of helical motifs for specific membrane compositions * Development of implicit membrane model for fast determination of protein-membrane affinity * Helical peptides and their sensitivity for membrane curvature



MORE INFORMATION: vacha.ceitec.cz



PLEASE NOTE: before the formal application process, all interested candidates should contact Robert Vacha (robert.vacha@mail.muni.cz).
Supervisor

prof. RNDr. Robert Vácha, PhD.

Structural dynamics, function and evolution of RNA and DNA. From the origin of life to modern biochemistry.
Supervisor: prof. RNDr. Jiří Šponer, DrSc.

Our scientific goal is understanding of the most basic principles of structural dynamics, function and evolution of DNA and RNA.

To achieve our goal, we use a wide portfolio of theoretical/computational approaches. Our research is closely related to experiments, mostly via extensive collaborations, though in the prebiotic chemistry we have in house experiments. We offer thesis essentially on any topic that is currently active in the laboratory. You can get the most up-to-date idea about our current research from the WOS or SCOPUS databases, where you can find all our publications (Sponer, J.), see all our collaborators, etc. The laboratory is at the Institute of Biophysics, Czech Academy Sciences, Kralovopolska 135, where we have a powerfull set of high-perfomance computer clusters dedicated exclusively to our group

Our methods are:
  • Classical Molecular Dynamics (MD) simulations. Besides standard simulations, we have years of experience in using all classes of enhanced-sampling techniques. We play also a prominent role in development of DNA/RNA simulation force fields and our versions are used world-wide
  • Quantum-chemical (QM) method. We have full spectrum of methods, ranging from ultra-accurate computations of model systems, through large-scale QM studies on biomolecular building blocks with hundreds of atoms up to sophisticated methods that are used in studies of excited states and photochemistry; the later technique is especially relevant to study the origin of life chemistry under UV light. Again, please see the papers we have published in last years.
  • Hybrid quantum-classical (QM/MM) methods, quantum molecular dynamics
  • Structural bioinformatics
Specific experiments are possible in the field of prebiotic chemistry in collaborating laboratories. Modern computations are extensively combined with many experimental techniques (NMR, X-Ray, high-energy lasers, biochemical techniques) mostly via numerous collaborations. We collaborate with 30 foreign and Czech laboratories. We publish about 20 papers annually and belong to the most cited Czech research groups. We currently work in several mutually interrelated research areas, which are open for the students as PhD topics.
  • RNA structural dynamics, folding and catalysis
  • Protein-RNA (or DNA) complexes. We try to go beyond the ensemble-averaged picture of experimental methods in order to understand how rarely accessed dynamical conformations invisible to experiments allow to separate affinity for reactivity or selectivity.
  • DNA, with focus on G-quadruplexes, specifically advanced studies of quadruplex folding mechanisms
  • Diverse types of quantum-chemical studies on nucleic acids systems
  • Origin of life (prebiotic chemistry), i.e., creation of the simplest chemical life on our planet (or anywhere else in the Universe), with a specific attention paid to the formamide pathway to template-free synthesis of the first RNA molecules. This specific project includes also in house experimental research.

Besides studies of specific systems, we are also involved extensively in method testing/development, mainly in the field of parametrization of molecular mechanical force fields for DNA

NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact Prof. Jiri Sponer (sponer@ncbr.muni.cz) for an informal discussion.

Laboratory web page https://www.ibp.cz/en/research/departments/structure-and-dynamics-of-nucleic-acids/info-about-the-department

List of publications https://www.ibp.cz/en/research/departments/structure-and-dynamics-of-nucleic-acids/publications
Supervisor

prof. RNDr. Jiří Šponer, DrSc.

Specialization: Condensed Matter Physics

Electronic and transport properties of ferroelectric topological insulator thin films
Supervisor: doc. Mgr. Ondřej Caha, Ph.D.

Topological insulators have a unique electronic band structure of surface states. These states have spin-momentum locked dispersion caused by time-reversal symmetry or mirror symmetry for topological insulators and topological crystalline insulators, respectively. The time-reversal symmetry can be broken by the magnetic field; thus, ferromagnetically doped topological insulators are of great scientific interest for the possible electronic and spintronic application. The other materials to be studied are thin films and quantum wells of topological crystalline insulators. The quantum well changes the electronic structure of the topological surface states due to changing the inversion symmetry protecting the topological surface states. We also plan to combine chalcogenide topological insulators with ferroelectric GeTe based materials.

The PhD candidate is expected to join our research in one of the following research activities:

  • Electronic characterization of the topological insulators: transport measurements at low temperatures
  • Participation in synchrotron-based experiments: ARPES, XAS, XMCD.
  • Data evaluation and computer simulations necessary to evaluate the experimental results.

Required Skills and Qualifications:

  • Master’s degree in Condensed Matter Physics.
  • Experience in en experimental laboratory, preferably in Solid State Physics.
  • Good communication skills (oral and written) in English.
  • Commitment to complete the PhD studies.

REFERENCES

  1. E. D. L. Rienks et al., Nature 576, 423-428 (2019).
  2. G. Springholz et al., submitted to Advanced Functional materials.

Supervisor

doc. Mgr. Ondřej Caha, Ph.D.

Excitations in metallic antiferromangets and altermagnets
Supervisor: Jan Kuneš, Ph.D.

Although relatively rare, metallic antiferromagnets have gained considerable attention due to their potential application in spintronics. Recently, altermagnets split off the antiferromagnetic 'treeline' as a distinct species with unique properties. The objective of this project is to investigate one- and two-particle excitations in antiferro- and altermagnets on the model as well as material specific level. This task requires many-body treatment of the interactions and the dynamical mean-field theory and its extensions will be the method of choice. The expected output will be the one-particle spectra (generalized band structures) and the dynamical spin susceptibilities (magnon spectra). The central question will be the interaction between the two. In addition, material specific aspects will be addressed for the materials of current interest such as RuO2 or CrSb.

Supervisor

Jan Kuneš, Ph.D.

Ferromagnetism in Ultra-Thin Films of Semiconducting Oxides
Supervisor: Hoa Hong Nguyen, PhD

The study aims to clarify the origin of induced room temperature ferromagnetism in pristine Semiconducting Oxide Thin Films. By down scaling semiconducting oxides to nano size, under appropriate conditions that may favor oxygen vacancies/defects at the surface and interface, room-temperature ferromagnets can be obtained. This may show us a way how to manipulate the spins and charges simultaneously in the same device. We propose to study the effect of introducing additional carriers and various types of defects into thin films of undoped semiconducting oxides such as HfO2, In2O3, Ga2O3, CeO2, WO3, etc. The study will also exploit the element selectivity of X-ray magnetic circular dichroism to detect changes of the spin polarization caused by the presence of extra charge carriers due either to x-ray irradiation or to dopant impurities. We expect these studies to shed new light on the mechanisms of d0-Ferromagnetism.

The PhD candidate is expected to join our research in one of the following research activities:


Preparation of targets and ultrathin films of semiconducting oxides with different transition-metal dopant concentrations.

Perform necessary measurements such as XRD, VSM, XAS, XMCD etc., to characterize the films.

Manipulating oxygen vacancies and defects in a controllable way by means of changing size, applying different conditions, and thermal and oxygen treatments.

Performing simulations in collaboration with theoreticians to guide the experiments.

Required Skills and Qualifications:

Master’s degree in either Condensed Matter Physics or Chemistry of Solids
Hands-on experience in experimental laboratories, being familiar with PLD, MPMS, XRD and Chemistry Lab should be preferred.
Good communication skills (oral and written) in English
High level of commitment to complete the PhD studies.

REFERENCES
1)Room temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Nguyen Hoa Hong, Joe Sakai, Nathalie Poirot, and Virginie Brizé, Physical Review B 73, 132404 (2006).
2)Ferromagnetism Due to Oxygen Vacancies in Low Dimensional Oxides. Nguyen Que Huong and Nguyen Hoa Hong, Journal of Magnetism and Magnetic Materials 534, 167944 (2021).
3)Effects of Al-Mn co-doping on magnetic properties of semiconducting oxide thin films. Nguyen Hoa Hong V. Shaidiuk, T. Atabaev, O. Ciftja, M Kurisu, H-K. Kim, Y-H. Hwang, Phys. Status Solidi B 251, 2274 (2014).
4)Observation of room temperature ferromagnetism in ZnO thin films. Nguyen Hoa Hong, Joe Sakai, and Virginie Brizé, Journal of Physics: Condensed Matter 19, 036219 (2007).
5)Magnetism due to defects/oxygen vacancies in HfO2 thin films. Nguyen Hoa Hong, Physica Status Solidi (c) 4, No. 3, 1270 (2007).
6)Magnetism in transition-metal-doped In2O3 thin films. Nguyen Hoa Hong, J. Sakai, N.T. Huong, A. Ruyter, and V. Brizé, Journal of Physics: Condensed Matter 18, 6897 (2006).
7)“Nano-sized Multifunctional Materials: Synthesis, Properties and Applications”, Edited by Nguyen Hoa Hong, Elsevier 2018, ISBN 978-0-12-813934-9.


MORE INFORMATION:"https://www.physics.muni.cz">https://www.physics.muni.cz

Supervisor

Hoa Hong Nguyen, PhD

Specialization: General Physics

No topics currently listed.

Specialization: Plasma Physics

Development of multifuncional thin films using plasma assisted chemical vapor deposition methods
Supervisor: doc. RNDr. Vilma Buršíková, Ph.D.

Současné období pandemie ukázalo na zvýšený požadavek na vývoj metod pro úpravu povrchových vlastností materiálů, např. pro přípravu antibakteriálních a antivirových povrchů nejen pro zdravotnické materiály, ale i pro obalovou techniku a další často dotýkané povrchy (kliky, vypínače, apod.). Nanočástice stříbra, ale i některých dalších kovů (měď, zlato, titan) jsou známé pro jejich antibakteriální i antivirové vlastnosti. Tématem navržené disertační práce bude vyvinout technologii kovem dopovaných organosilikonových tenkých vrstev použitím metody plazmatem aktivované depozice z plynné fáze. Pro zabudování kovů budou odzkoušeny 2 metody: (1) depozice ze směsí organosilikonových a organometalických prekurzorů a (2) příprava organosilikonových vrstev v prachovém plazmatu dodáním nanočástic různých kovů s antibakteriálními vlastnostmi do plazmatu. V případě druhém bude nutné vyřešit dodání částic do plazmatu.
Pro přípravu shora uvedených vrstev je velmi důležitý jejich multifunkční charakter, kromě antibakteriálních vlastností musí splňovat několik dalších důležitých vlastností, jako jsou dobrá adheze k substrátu, otěruvzdornost, elasticita (zejména v případě flexibilních substrátů), transparentnost (v případě obalových materiálů). Požadavek na kvalitu struktury vrstev (dopant se nesmí uvolňovat z povrchu) bude rovněž zvýšená, vrstva musí zachovat povrchové i objemové vlastnosti a musí být odolný vůči běžným čisticím postupům.
V rámci práce budou studovány vlastnosti tenkých vrstev i v závislosti na druhu substrátu na který jsou tenké vrstvy nanášeny (u plazmatem asistované depozice může mít substrát významný vliv). Bude kladen důraz na studium vlivu záporného stejnosměrného předpětí na substrátu na vlastnosti nadeponovaných vrstev. V práci se bude věnovat i studiu časového vývoje předpětí a jeho vliv na hloubkový profil mechanických, strukturních a dalších fyzikálních a chemických vlastností vrstev.
V první části disertační práce se budou vyvíjet metody pro přípravu různých typů vrstev ze směsí organosilikonů anebo organosilazanů s nosnými plyny (např. Ar, O2, N2O, atd.) aby bylo možné vytypovat vhodné typy vrstev pro následné dopování kovovými prvky.
Pro úspěšné řešení tohoto tématu bude velice důležitá důkladná charakterizace tenkých vrstev, jako jsou měření mechanických (nanoindentace, vrypové a nanootěrové zkoušky), povrchových (topografie pomocí AFM, konfokální mikroskopie, studium volné povrchové energie), strukturních a chemických vlastností vrstev (FTIR, XPS, Raman, SEM, TEM, RBS/ERDA atd.). Většina těchto technik je k dispozici na pracovišti ÚFE, TEM můžeme řešit ve spolupráci s ÚFM anebo s CEITEC, RBS/ERDA ve spolupráci s ÚJF (Řež u Prahy). Antibakteriální testy pak můžeme řešit ve spolupráci s FCH VUT, TUL Liberec anebo Univerzitou Tomáše Bati ve Zlíně.
Materiálně je řešení tématu v současné době zabezpečený projektem GAČR 19-15240S.

Supervisor

doc. RNDr. Vilma Buršíková, Ph.D.

Plasma engineering of nanostructured coatings for flexible energy-harvesting and -storage systems
Supervisor: doc. RNDr. Tomáš Homola, PhD.

The novel emerging field of flexible and printed electronics has attracted increased attention because of its potential to enable low-cost and high-throughput manufacturing of electronics on cheap plastic substrates for various applications including photovoltaics. However, this segment is still far away from commercialization because the cutting edge materials and manufacturing steps are not compatible with thermally sensitive flexible materials.

The PhD. work will focus on low-temperature plasma engineering of novel nanostructured nanomaterials as tungsten oxide, iron oxides, titanium dioxide, molybdenum disulfide, etc ... and their application in various energy-harvesting, -storage systems and sensing devices. The topic and tasks in the laboratory are strongly oriented towards the industrial segment.

Possibility to spend 6 months on an internship in a high-tech company in Singapore working on PhD. topic.

The exacttopic and tasks will be defined later according to applicant preference: perovskite solar cells, tandem solar cells, supercapacitors, etc ...

Keywords: State-of-the-art plasma generators, coating deposition methods (i.e. ink-jet printing), plasma treatment, advanced surfaces, nano-coatings, roll-to-roll manufacturing, flexible and printed electronics, surface characterization (AFM, XPS, SEM, etc.).

Notes

More information:

https://plasma.sci.muni.cz/en/for-students/flexible-and-printed-electronics

Relevant literature:

T. Homola, J. Pospíšil, R. Krumpolec, P. Souček, P. Dzik, M. Weiter, et al., Atmospheric dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide surfaces, ChemSusChem. 11 (2018) 941–947. doi:10.1002/cssc.201702139.

T. Homola, P. Dzik, M. Veselý, J. Kelar, M. Černák, M. Weiter, Fast and low-temperature (70 C) mineralization of inkjet printed mesoporous TiO2 photoanodes using ambient air plasma, ACS Appl. Mater. Interfaces. 8 (2016) 33562–33571. doi:10.1021/acsami.6b09556.

Supervisor

doc. RNDr. Tomáš Homola, PhD.

Specialization: Theoretical Physics

No topics currently listed.

Specialization: Wave and Particle Optics

No topics currently listed.

Supervisors

Study information

Provided by Faculty of Science
Type of studies Doctoral
Mode full-time Yes
combined Yes
distance No
Study options single-subject studies No
single-subject studies with specialization Yes
major/minor studies No
Standard length of studies 4 years
Language of instruction Czech
Collaborating institutions
  • The Czech Academy of Sciences
  • Astronomický ústav AV ČR
  • Biofyzikální ústav AV ČR
  • Ústav fyziky materiálů AV ČR
  • Ústav přístrojové techniky AV ČR
Doctoral board and doctoral committees

Do you have any questions?
Send us an e-mail to

prof. Rikard von Unge, Ph.D.

Consultant

e‑mail:

You are running an old browser version. We recommend updating your browser to its latest version.

More info