Publication details

Backdoors to q-Horn

Investor logo
Authors

ORDYNIAK Sebastian RAMANUJAN M S SZEIDER Stefan GASPERS Serge SAURABH Saket

Year of publication 2013
Type Article in Proceedings
Conference LIPIcs
MU Faculty or unit

Faculty of Informatics

Citation
Doi http://dx.doi.org/10.4230/LIPIcs.STACS.2013.67
Field Information theory
Keywords satisfiability; backdoors; parameterized complexity
Description The class q-Horn, introduced by Boros, Crama and Hammer in 1990, is one of the largest known classes of propositional CNF fomulas for which satisfiability decision is polynomial. This class properly contains the fundamental classes of Horn and 2CNF formulas as well as the class of renamable (or disguised) Horn formulas. In this paper we gradually extend this class such that its favorable algorithmic properties can be made accessible to formulas that are outside but ``close'' to this class. We show that satisfiability decision is fixed-parameter tractable parameterized by the distance of the given formula from q-Horn. The distance is measured as the smallest number of variables that we need to delete from F in order to get a q-Horn formula, i.e., the size of a smallest deletion backdoor set into the class q-Horn. This result generalizes known fixed-parameter tractability results for satisfiability decision with respect to the parameters distance from Horn or 2CNF (Nishimura, Ragde, Szeider 2004), and with respect to renamable Horn (Razgon, O'Sullivan 2009).
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info

By clicking “Accept Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. Cookie Settings

Necessary Only Accept Cookies