Publication details

Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages

Authors

VEREŠČÁKOVÁ Hana AMBROŽOVÁ Gabriela KUBALA Lukáš PEREČKO Tomáš KOUDELKA Adolf VAŠÍČEK Ondřej RUDOLPH T.K. KLINKE A. WOODCOCK S.R. FREEMAN B.A. PEKAROVÁ Michaela

Year of publication 2017
Type Article in Periodical
Magazine / Source Free Radical Biology and Medicine
MU Faculty or unit

Faculty of Science

Citation
web http://www.sciencedirect.com/science/article/pii/S0891584917300047
Doi http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.003
Keywords Nitro-oleic acid; Nitro-fatty acids; Differentiation; Inflammation; Macrophages; Growth factors; Signaling pathways
Description Many diseases accompanied by chronic inflammation are connected with dysregulated activation of macrophage subpopulations. Recently, we reported that nitro-fatty acids (NO2-FAs), products of metabolic and inflammatory reactions of nitric oxide and nitrite, modulate macrophage and other immune cell functions. Bone marrow cell suspensions were isolated from mice and supplemented with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with NO2-OA for different times. RAW 264.7 macrophages were used for short-term (1-5 min) experiments. We discovered that NO2-OA reduces cell numbers, cell colony formation, and proliferation of macrophages differentiated with colony-stimulating factors (CSFs), all in the absence of toxicity. In a case of GM-CSF-induced bone marrow-derived macrophages (BMMs), NO2-OA acts via downregulation of signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) activation. In the case of M-CSF-induced BMMs, NO2-OA decreases activation of M-CSFR and activation of related PI3K and ERR. Additionally, NO2-OA also attenuates activation of BMMs. In aggregate, we demonstrate that NO2-OA regulates the process of macrophage differentiation and that NO2-FAs represent a promising therapeutic tool in the treatment of inflammatory pathologies linked with increased accumulation of macrophages in inflamed tissues.

You are running an old browser version. We recommend updating your browser to its latest version.

More info