Publication details

Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension

Authors

KLINKE Anna MÖLLER Annika PEKAROVÁ Michaela RAVEKES Thorben FRIEDRICHS Kai BERLIN Matthias SCHEU Katrin M KUBALA Lukáš KOLÁŘOVÁ Hana AMBROŽOVÁ Gabriela SCHERMULY Ralph T WOODCOCK Steven R BRUCE  FREEMAN  ROSENKRANZ Stephan BALDUS Stephan RUDOLPH Volker RUDOLPH Tanja K

Year of publication 2014
Type Article in Periodical
Magazine / Source American Journal of Respiratory Cell and Molecular Biology
Citation
Web http://www.atsjournals.org/doi/abs/10.1165/rcmb.2013-0063OC
Doi http://dx.doi.org/10.1165/rcmb.2013-0063OC
Keywords pulmonary arterial hypertension; nitro-fatty acids; inflammation; hypoxia
Description Pulmonary arterial hypertension (PAH) is characterized by adverse remodeling of pulmonary arteries. Although the origin of the disease and its underlying pathophysiology remain incompletely understood, inflammation has been identified as a central mediator of disease progression. Oxidative inflammatory conditions support the formation of electrophilic fatty acid nitroalkene derivatives, which exert potent anti-inflammatory effects. The current study investigated the role of 10-nitro-oleic acid (OA-NO2) in modulating the pathophysiology of PAH in mice. Mice were kept for 28 days under normoxic or hypoxic conditions, and OA-NO2 was infused subcutaneously. Right ventricular systolic pressure (RVPsys) was determined, and right ventricular and lung tissue was analyzed. The effect of OA-NO2 on cultured pulmonary artery smooth muscle cells (PASMCs) and macrophages was also investigated. Changes in RVPsys revealed increased pulmonary hypertension in mice on hypoxia, which was significantly decreased by OA-NO2 administration. Right ventricular hypertrophy and fibrosis were also attenuated by OA-NO2 treatment. The infiltration of macrophages and the generation of reactive oxygen species were elevated in lung tissue of mice on hypoxia and were diminished by OA-NO2 treatment. Moreover, OA-NO2 decreased superoxide production of activated macrophages and PASMCs in vitro. Vascular structural remodeling was also limited by OA-NO2. In support of these findings, proliferation and activation of extracellular signal-regulated kinases 1/2 in cultured PASMCs was less pronounced on application of OA-NO2.Our results show that the oleic acid nitroalkene derivative OA-NO2 attenuates hypoxia-induced pulmonary hypertension in mice. Thus, OA-NO2 represents a potential therapeutic agent for the treatment of PAH.

You are running an old browser version. We recommend updating your browser to its latest version.

More info