Publication details

Study of red clover (Trifolium pratense L.) genes regulating nitrogen fixation and nodulation process

Investor logo
Authors

MACKOVÁ Eliška VLK David ŘEPKOVÁ Jana TRNĚNÝ Oldřich NEDĚLNÍK Jan JAKEŠOVÁ Hana NOVOTNÝ Petr BOROŇ Ján

Year of publication 2017
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description Symbiotic nitrogen fixation is a mutualistic bacteria-plant relationship in which bacteria provides nitrogen converted into organic compounds and plant supplies the bacteria with carbon and energy source. The best known and the most important symbiotic relationship occurs between plants of the family Fabaceae and rhizobacteria. Efficiency of symbiotic nitrogen fixation differs between plant species but also varies within species. This phenomenon has been described as the result of polymorphisms in quantitative trait loci associated with symbiotic nitrogen fixation. Our study was focused to finding associations between level of nitrogen fixation and candidate genes for this ability for further application in red clover breeding. Computational analysis included in silico identification of 17 candidate legume genes for controlling the nodulation process (CLE12, CRE1, DMI3, DNF2, EFD, ERN, LYK3, NFP, NIN, NSP1, NSP2, PEN3, PHO2, PNO1, RDN1, SKL1, SUNN) and sequence capturing from the assembled genome of M. truncatula, T. pratense and T. subterraneum for multiple alignment and searching conserved regions for primer design. Secondly, large population of red clover genotypes was determined for nitrogen fixation ability by acetylene reduction assay for nitrogenase activity. Forty-eight plants (varieties Start, Global, Columbia and Vltavín) efficient and inefficient in nitrogen fixation were used for DNA isolation and comparative analyses using The Roche NimbleGen SeqCap EZ enrichment system to enrich targeted regions (100 kb in total) in the candidate genes. Enriched gene regions are intended to be sequenced on Illumina MiSeq System with the coverage 2000x. The sequence data will be then used for SNP mining and association studies between obtained phenotypes of red clover contrast for nitrogen fixation ability.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info