Publication details

Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies

Authors

MERNIER F. DE PLAA J. WERNER Norbert KAASTRA J.S. RAASSEN A.J.J. GU L. MAO J. URDAMPILLETA I. TRUONG N. SIMIONESCU A.

Year of publication 2018
Type Article in Periodical
Magazine / Source Monthly Notices of the Royal Astronomical Society
MU Faculty or unit

Faculty of Science

Citation
Web
Doi http://dx.doi.org/10.1093/mnrasl/sly080
Keywords galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; X-rays: galaxies
Description X-ray measurements find systematically lower Fe abundances in the X-ray emitting haloes pervading groups (kT less than or similar to 1.7 keV) than in clusters of galaxies. These results have been difficult to reconcile with theoretical predictions. However, models using incomplete atomic data or the assumption of isothermal plasmas may have biased the best-fitting Fe abundance in groups and giant elliptical galaxies low. In this work, we take advantage of a major update of the atomic code in the spectral fitting package SPEX to re-evaluate the Fe abundance in 43 clusters, groups, and elliptical galaxies (the CHEERS sample) in a self-consistent analysis and within a common radius of 0.1r(500). For the first time, we report a remarkably similar average Fe enrichment in all these systems. Unlike previous results, this strongly suggests that metals are synthesized and transported in these haloes with the same average efficiency across two orders of magnitude in total mass. We show that the previous metallicity measurements in low-temperature systems were biased low due to incomplete atomic data in the spectral fitting codes. The reasons for such a code-related Fe bias, also implying previously unconsidered biases in the emission measure and temperature structure, are discussed.

You are running an old browser version. We recommend updating your browser to its latest version.

More info