Publication details
Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by Arterial Spin Labelling MRI in rats
Authors | |
---|---|
Year of publication | 2019 |
Type | Article in Periodical |
Magazine / Source | Scientific reports |
MU Faculty or unit | |
Citation | |
Web | https://www.nature.com/articles/s41598-019-42532-z |
Doi | http://dx.doi.org/10.1038/s41598-019-42532-z |
Keywords | METHYLAZOXYMETHANOL ACETATE; ANIMAL-MODELS; BRAIN STRUCTURE; CANNABIS USE; SCHIZOPHRENIA; FLOW; METAANALYSIS; SYMPTOMS; DELTA(9)-TETRAHYDROCANNABINOL; DELTA-9-TETRAHYDROCANNABINOL |
Description | Clinical studies consistently report structural impairments (i.e.: ventricular enlargement, decreased volume of anterior cingulate cortex or hippocampus) and functional abnormalities including changes in regional cerebral blood flow in individuals suffering from schizophrenia, which can be evaluated by magnetic resonance imaging (MRI) techniques. The aim of this study was to assess cerebral blood perfusion in several schizophrenia-related brain regions using Arterial Spin Labelling MRI (ASL MRI, 9.4 T Bruker BioSpec 94/30USR scanner) in rats. In this study, prenatal exposure to methylazoxymethanol acetate (MAM, 22 mg/kg) at gestational day (GD) 17 and the perinatal treatment with Delta-9-tetrahydrocannabinol (THC, 5 mg/kg) from GD15 to postnatal day 9 elicited behavioral deficits consistent with schizophrenia-like phenotype, which is in agreement with the neurodevelopmental hypothesis of schizophrenia. In MAM exposed rats a significant enlargement of lateral ventricles and perfusion changes (i.e.: increased blood perfusion in the circle of Willis and sensorimotor cortex and decreased perfusion in hippocampus) were detected. On the other hand, the THC perinatally exposed rats did not show differences in the cerebral blood perfusion in any region of interest. These results suggest that although both pre/perinatal insults showed some of the schizophrenia-like deficits, these are not strictly related to distinct hemodynamic features. |
Related projects: |
|