Publication details

Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals

Authors

NEJEDLY P. KREMEN V. SLADKY V. CIMBALNIK J. KLIMES P. PLESINGER F. MIVALT F. TRAVNICEK V. VISCOR I. PAIL Martin HALAMEK J. BRINKMANN B. H. BRÁZDIL Milan JURAK P. WORRELL G.

Year of publication 2020
Type Article in Periodical
Magazine / Source Scientific Data
MU Faculty or unit

Faculty of Medicine

Citation
Web https://www.nature.com/articles/s41597-020-0532-5.pdf
Doi http://dx.doi.org/10.1038/s41597-020-0532-5
Keywords HIGH-FREQUENCY OSCILLATIONS
Description EEG signal processing is a fundamental method for neurophysiology research and clinical neurology practice. Historically the classification of EEG into physiological, pathological, or artifacts has been performed by expert visual review of the recordings. However, the size of EEG data recordings is rapidly increasing with a trend for higher channel counts, greater sampling frequency, and longer recording duration and complete reliance on visual data review is not sustainable. In this study, we publicly share annotated intracranial EEG data clips from two institutions: Mayo Clinic, MN, USA and St. Anne's University Hospital Brno, Czech Republic. The dataset contains intracranial EEG that are labeled into three groups: physiological activity, pathological/epileptic activity, and artifactual signals. The dataset published here should support and facilitate training of generalized machine learning and digital signal processing methods for intracranial EEG and promote research reproducibility. Along with the data, we also propose a statistical method that is recommended for comparison of candidate classifier performance utilizing out-of-institution/out-of-patient testing.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info