You are here:
Publication details
Unraveling the Relationship between the Concentrations of Hydrophobic Organic Contaminants in Freshwater Fish of Different Trophic Levels and Water Using Passive Sampling
Authors | |
---|---|
Year of publication | 2020 |
Type | Article in Periodical |
Magazine / Source | Environmental Science & Technology |
MU Faculty or unit | |
Citation | |
web | https://pubs.acs.org/doi/10.1021/acs.est.9b07821 |
Doi | http://dx.doi.org/10.1021/acs.est.9b07821 |
Keywords | Anatomy; Animal derived food; Equilibrium; Phenyls; Food |
Description | The concentrations of hydrophobic organic compounds (HOCs) in aquatic biota are used for compliance, as well as time and spatial trend monitoring in the aqueous environment (European Union water framework directive, OSPAR). Because of trophic magnification in the food chain, the thermodynamic levels of HOCs, for example, polychlorinated biphenyl congeners, dichlorodiphenyltrichloroethane, and brominated diphenyl ether congeners, in higher trophic level (TL) organisms are expected to be strongly elevated above those in water. This work compares lipid-based concentrations at equilibrium with the water phase derived from aqueous passive sampling (C-L) with the lipid-based concentrations in fillet and liver of fish (C-L) at different TLs for three water bodies in the Czech Republic and Slovakia. The C-L values of HOCs in fish were near C-L reversible arrow water only after trophic magnification up to TL = 4. For fish at lower TL, C-L progressively decreased relative to C-L reversible arrow water as K-OW of HOCs increased above 10(6). The C-L value decreasing toward the bottom of the food chain suggests nonequilibrium for primary producers (algae), which is in agreement with modeling passive HOC uptake by algae. Because trophic magnification and the resulting C-L in fish exhibit large natural variability, C-L reversible arrow water is a viable alternative for monitoring HOCs using fish, showing a twofold lower confidence range and requiring less samples. |
Related projects: |