Publication details

Environmental drivers of Sphagnum growth in peatlands across the Holarctic region

Authors

BENGTSSON Fia RYDIN Hakan BALTZER Jennifer L. BRAGAZZA Luca BU Zhao-Jun CAPORN Simon J. M. DORREPAAL Ellen FLATBERG Kjell Ivar GALANINA Olga GALKA Mariusz GANEVA Anna GOIA Irina GONCHAROVA Nadezhda HÁJEK Michal HARAGUCHI Akira HARRIS Lorna I. HUMPHREYS Elyn JIROUŠEK Martin KAJUKALO Katarzyna KAROFELD Edgar KORONATOVA Natalia G. KOSYKH Natalia P. LAINE Anna M. LAMENTOWICZ Mariusz LAPSHINA Elena LIMPENS Juul LINKOSALMI Maiju MA Jin-Ze MAURITZ Marguerite MITCHELL Edward A. D. MUNIR Tariq M. NATALI Susan M. NATCHEVA Rayna PAYNE Richard J. PHILIPPOV Dmitriy A. RICE Steven K. ROBINSON Sean ROBROEK Bjorn J. M. ROCHEFORT Line SINGER David STENOIEN Hans K. TUITTILA Eeva-Stiina VELLAK Kai WADDINGTON James Michael GRANATH Gustaf

Year of publication 2021
Type Article in Periodical
Magazine / Source Journal of Ecology
MU Faculty or unit

Faculty of Science

Citation
web https://doi.org/10.1111/1365-2745.13499
Doi http://dx.doi.org/10.1111/1365-2745.13499
Keywords climate; global change; net primary production; nitrogen deposition; PAR; peat mosses; plant-climate interactions; structural equation model
Description The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info