You are here:
Publication details
Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules
Authors | |
---|---|
Year of publication | 2010 |
Type | Article in Periodical |
Magazine / Source | Journal of Chromatography A |
Citation | |
Doi | http://dx.doi.org/10.1016/j.chroma.2010.10.100 |
Keywords | Hypercrosslinked polymer monolith; Poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene); Reversed phase chromatography; Size-exclusion chromatography; Small molecules |
Description | Monolithic polymers with an unprecedented surface area of over 600 m(2)/g have been prepared from a poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) precursor monolith that was swollen in 1,2-dichloroethane and hypercrosslinked via Friedel-Crafts reaction catalyzed by ferric chloride. Both the composition of the reaction mixture used for the preparation of the precursor monolith and the conditions of the hypercrosslinking reaction have been varied using mathematical design of experiments and the optimized system validated. Hypercrosslinked monolithic capillary columns contain an array of small pores that make the column ideally suited for the high efficiency isocratic separations of small molecules such as uracil and alkylbenzenes with column efficiencies reproducibly exceeding 80,000 plates/m for retained compounds. The separation process could be accelerated while also improving peak shape through the use of higher temperatures and a ternary mobile phase consisting of acetonitrile, tetrahydrofuran, and water. As a result, seven compounds were well separated in less than 2 min. These columns also facilitate separations of peptide mixtures such as a tryptic digest of cytochrome c using a gradient elution mode which affords a sequence coverage of 93%. A 65 cm long hypercrosslinked capillary column used in size exclusion mode with tetrahydrofuran as the mobile phase afforded almost baseline separation of toluene and five polystyrene standards. (C) 2010 Elsevier B.V. All rights reserved. |