Publication details

Depth profiling of thin plasma-polymerized amine films using GDOES in an Ar-O-2 plasma

Authors

KOVAČ Janez EKAR Jernej ČEKADA Miha ZAJÍČKOVÁ Lenka NEČAS David BLAHOVÁ Lucie WANG Jiang Yong MOZETIC Miran

Year of publication 2022
Type Article in Periodical
Magazine / Source Applied Surface Science
MU Faculty or unit

Faculty of Science

Citation
Web https://doi.org/10.1016/j.apsusc.2021.152292
Doi http://dx.doi.org/10.1016/j.apsusc.2021.152292
Keywords GDOES; Depth profile; Amine plasma polymer; Ar-O-2 plasma
Description Thin polymer films were deposited on polished stainless-steel samples by PECVD from a cyclopropylamine precursor and characterized by X-ray photoelectron spectroscopy, secondary-ion mass spectrometry and glow-discharge optical emission spectroscopy (GDOES) depth profiling. These depth profiles exhibited reasonable agreement. The GDOES involved the erosion of the polymer films in plasma sustained by an asymmetric RF capacitively coupled discharge using both Ar and Ar-O2 gases. The application of pure Ar caused unwanted effects, such as the broadening of the polymer-film/substrate interface, which were suppressed when using the mixture with oxygen. Another benefit of oxygen was a significant increase in the etching rate by a factor of about 15 as compared to pure argon. The mechanisms involved in the depth profiling using the mixture of gases were elaborated in some detail, taking into account plasma parameters typical for an asymmetric, capacitively coupled RF discharge in a small volume. The main benefit of using the Ar/O2 GDOES profiling with respect to XPS and SIMS depth profiling is the increased sputtering rate for polymer films. Comparing the GDOES depth profiling with the Ar/O2 mixture with profiling in pure Ar, the benefits are a higher sputtering rate and better depth resolution at the polymer/substrate interface.

You are running an old browser version. We recommend updating your browser to its latest version.

More info