You are here:
Publication details
Remarks on the Symmetries of a Model Hypersurface
Authors | |
---|---|
Year of publication | 2022 |
Type | Article in Periodical |
Magazine / Source | Analysis Mathematica |
MU Faculty or unit | |
Citation | |
web | https://link.springer.com/article/10.1007/s10476-022-0157-3 |
Doi | http://dx.doi.org/10.1007/s10476-022-0157-3 |
Keywords | real hypersurface in C-N; finite jet determination; real-analytic in-finitesimal CR automorphism |
Description | In this partly expository paper, we deal with sharp jet determination results following from a generalization of the Chern—Moser theory to Levi degenerate hypersurfaces with polynomial models, as obtained in [30]. We formulate the jet determination results for finitely smooth hypersurfaces of finite type. Another goal of the paper is to gain more understanding of the symmetries for such hypersurfaces, which violate 2-jet determination. Finally, we collect and state some open problems regarding the existence of graded components of strictly positive weight of the Lie Algebra of symmetries for the model hypersurface. |