Publication details

Algebraic Properties of Paraorthomodular Posets

Authors

CHAJDA Ivan FAZIO Davide LÄNGER Helmut LEDDA Antonio PASEKA Jan

Year of publication 2022
Type Article in Periodical
Magazine / Source Logic Journal of the IGPL
MU Faculty or unit

Faculty of Science

Citation
Web https://academic.oup.com/jigpal/article/30/5/840/6317499
Doi http://dx.doi.org/10.1093/jigpal/jzab024
Keywords poset with an antitone involution; orthomodular lattice; orthomodular poset; paraorthomodular lattice; paraorthomodular poset; orthoalgebra; effect algebra; commutative directoid; D-continuous poset; Dedekind-MacNeille completion
Description Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind–MacNeille completion is paraorthomodular are provided.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info