You are here:
Publication details
Future land-use change and its impact on terrestrial ecosystem carbon pool evolution along the Silk Road under SDG scenarios
Authors | |
---|---|
Year of publication | 2023 |
Type | Article in Periodical |
Magazine / Source | Science Bulletin |
MU Faculty or unit | |
Citation | |
web | https://doi.org/10.1016/j.scib.2023.03.012 |
Doi | http://dx.doi.org/10.1016/j.scib.2023.03.012 |
Keywords | Carbon pool; Cellular automata; Land-use projection; Scenarios; Sustainable development goals (SDGs); System dynamics model |
Description | Sustainable development goals (SDGs) in the United Nations 2030 Agenda call for action by all nations to promote economic prosperity while protecting the planet. Projection of future land-use change under SDG scenarios is a new attempt to scientifically achieve the SDGs. Herein, we proposed four scenario assumptions based on the SDGs, including the sustainable economy (ECO), sustainable grain (GRA), sustainable environment (ENV), and reference (REF) scenarios. We forecasted land-use change along the Silk Road (resolution: 300 m) and compared the impacts of urban expansion and forest conversion on terrestrial carbon pools. There were significant differences in future land use change and carbon stocks, under the four SDG scenarios, by 2030. In the ENV scenario, the trend of decreasing forest land was mitigated, and forest carbon stocks in China increased by approximately 0.60% compared to 2020. In the GRA scenario, the decreasing rate of cultivated land area has slowed down. Cultivated land area in South and Southeast Asia only shows an increasing trend in the GRA scenario, while it shows a decreasing trend in other SDG scenarios. The ECO scenario showed highest carbon losses associated with increased urban expansion. The study enhances our understanding of how SDGs can contribute to mitigate future environmental degradation via accurate simulations that can be applied on a global scale. |