Publication details
An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions
Authors | |
---|---|
Year of publication | 2023 |
Type | Article in Periodical |
Magazine / Source | Current Biology |
MU Faculty or unit | |
Citation | |
Web | https://www.sciencedirect.com/science/article/pii/S0960982223004773?via%3Dihub |
Doi | http://dx.doi.org/10.1016/j.cub.2023.04.029 |
Keywords | plasma membrane proteins; auxin transport; necrotrophic pathogens; arabidopsis thaliana; phosphoproteomics |
Description | The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resis-tance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hyper-sensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that func-tions to control transporter substrate preference during plant growth and defense balance decisions. |