Publication details

Integrative CUT&Tag-RNA-Seq analysis of histone variant macroH2A1-dependent orchestration of human induced pluripotent stem cell reprogramming

Authors

LIORNI Niccolo NAPOLI Alessandro CASTELLANA Stefano GIALLONGO Sebastiano HULÍNOVÁ Daniela LO RE Oriana KOUTNÁ Irena MAZZA Tommaso VINCIGUERRA Manlio

Year of publication 2023
Type Article in Periodical
Magazine / Source Epigenomics
MU Faculty or unit

Faculty of Medicine

Citation
web https://www.futuremedicine.com/doi/10.2217/epi-2023-0267
Doi http://dx.doi.org/10.2217/epi-2023-0267
Keywords CUT&Tag; induced pluripotent stem cells; iPSCs; reprogramming; somatic cells
Description Aim:Human induced pluripotent stem cells (iPSCs) are inefficiently derived from somatic cells by overexpression of defined transcription factors. Overexpression of H2A histone variant macroH2A1.1, but not macroH2A1.2, leads to increased iPSC reprogramming by unclear mechanisms. Materials & methods:Cleavage under targets and tagmentation (CUT&Tag) allows robust epigenomic profiling of a low cell number. We performed an integrative CUT&Tag-RNA-Seq analysis of macroH2A1-dependent orchestration of iPSCs reprogramming using human endothelial cells. Results:We demonstrate wider genome occupancy, predicted transcription factors binding, and gene expression regulated by macroH2A1.1 during reprogramming, compared to macroH2A1.2. MacroH2A1.1, previously associated with neurodegenerative pathologies, specifically activated ectoderm/neural processes. Conclusion:CUT&Tag and RNA-Seq data integration is a powerful tool to investigate the epigenetic mechanisms occurring during cell reprogramming.

You are running an old browser version. We recommend updating your browser to its latest version.

More info