You are here:
Publication details
Trifluoromethylcinnamanilides - Effective dual inhibitors of Mycobacterium smegmatis and Plasmodium falciparum
Authors | |
---|---|
Year of publication | 2025 |
Type | Article in Periodical |
Magazine / Source | Bioorganic Chemistry |
MU Faculty or unit | |
Citation | |
web | https://www.sciencedirect.com/science/article/abs/pii/S0045206824008629?via%3Dihub |
Doi | http://dx.doi.org/10.1016/j.bioorg.2024.107957 |
Keywords | Cinnamanilides; Lipophilicity; P. falciparum; Cytotoxicity; Molecular modeling; QTAIM calculations |
Description | A series of eighteen new 2-trifluoromethylcinnamanilides (1a-r) were synthesized by microwave synthesis and investigated for their antimycobacterial and antimalarial activities, along with the complementary (2E)-3-[3(trifluoromethyl)phenyl]-N-arylprop-2-enanilides (2a-r) and (2E)-3-[4-(trifluoromethyl)phenyl]-N-arylprop-2enanilides (3a-r) prepared earlier. All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102. The most active compounds against M. smegmatis (MIC values in the range of 1.17-11.1 mu M, more effective than rifampicin) were anilides substituted by 3,5-CF3 (1q, 2q, 3q), 4-OCF3 (1k), and 4-CF3 (1j, 2j). The most effective agents against P. falciparum (IC50 values in the range of 0.32-4.5 mu M, comparable to chloroquine) were anilides substituted by 3,5-CF3 (1q, 2q, 3q), 2-Br-4-OCF3 (1r), 4-CF3 (1j, 3j), 4-F (2d), 4-Cl (2g), 2-Cl (1e, 2e). A preliminary in vitro cytotoxicity screening was assessed using human leukemic cell lines and human dermal fibroblasts, revealing the toxic effect of 3,5-CF3 substituted anilides. On the other hand, the other investigated agents showed insignificant cytotoxic effects. Stability assays using rat liver microsomes demonstrated that compounds 1r (R = 2-Br-4-OCF3) and 1q (R = 3,5-CF3) are neither metabolized nor affect cytochrome P450 metabolizing capacity in vitro. Furthermore, complex in silico studies were performed - a combined approach (docking/MD simulations/QTAIM calculations) helped to define the molecular interactions that were applied during the binding of active agents and the subsequent inhibition of their molecular targets - InhA (activity against M. smegmatis) and arginase |