You are here:
Publication details
Correlation-assisted quantum communication
Authors | |
---|---|
Year of publication | 2003 |
Type | Article in Periodical |
Magazine / Source | Physical Review A |
MU Faculty or unit | |
Citation | |
Field | Informatics |
Keywords | correlation; quantum communication |
Description | Quantum dense coding is considered to be one of the most remarkable demonstrations of the existence of quantum entanglement. In this paper, we analyze the role of correlations (both classical and quantum) in quantum communication protocols. We study how the capacity of a single-qubit quantum channel depends on correlations between Alice and Bob. In particular, we consider a scenario when Alice and Bob share a pair of qubits in a state such that Alice's qubit is in the state described by the density operator r=1/2I+n x s. We evaluate a capacity of the noiseless channel for two cases: (1) when Bob performs measurement just on the particle received from Alice, and (2) in the case when he utilizes correlations that have been established prior to the communication. We present a simple classical scenario which might serve as a prototype of quantum dense coding. We generalize our results also for qudits. In addition, we address some aspects of the issue of security in correlation-assisted communication protocols. |
Related projects: |