Publication details

Combinatorial Generation of Matroid Representations: Theory and Practice

Authors

HLINĚNÝ Petr

Year of publication 2007
Type Article in Proceedings
Conference Innovative Applications of Information Technology for the Developing World
MU Faculty or unit

Faculty of Informatics

Citation
web conference
Field Informatics
Keywords representable matroid; exhaustive generation
Description Matroids (also called combinatorial geometries) present a strong combinatorial generalization of graphs and matrices. Unlike isomorph-free generation of graphs, which has been extensively studied both from theoretical and practical points of view, not much research has been done so far about matroid generation. Perhaps the main problem with matroid generation lies in a very complex internal structure of a matroid. That is why we focus on generation of suitable matroid representations, and we outline a way how to exhaustively generate matroid representations over finite fields in reasonable computing time. In particular, we extend here some enumeration results on binary (over the binary field) combinatorial geometries by Kingan et al.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info