Publication details

A Deformable Registration Method for Automated Morphometry of MRI Brain Images in Neuropsychiatric Research

Authors

SCHWARZ Daniel KAŠPÁREK Tomáš PROVAZNÍK Ivo JARKOVSKÝ Jiří

Year of publication 2007
Type Article in Periodical
Magazine / Source IEEE Transactions on Medical Imaging
MU Faculty or unit

Faculty of Medicine

Citation
Web http://dx.doi.org/10.1109/TMI.2007.892512
Field Neurology, neurosurgery, neurosciences
Keywords MRI;image processing;schizophrenia;image registration;computational neuroanatomy
Description Image registration methods play a crucial role in computational neuroanatomy. This paper mainly contributes to the field of image registration with the use of nonlinear spatial transformations. Particularly, problems connected to matching MRI brain image data obtained from various subjects and with various imaging conditions are solved here. Registration is driven by local forces derived from multimodal point similarity measures which are estimated with the use of joint intensity histogram and tissue probability maps. A spatial deformation model imitating principles of continuum mechanics is used. Five similarity measures are tested in an experiment with image data obtained from the Simulated Brain Database and a quantitative evaluation of the algorithm is presented. Results of application of the method in automated spatial detection of anatomical abnormalities in first-episode schizophrenia are presented.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info