Publication details

MSMAD: a computationally efficient method for the analysis of noisy array CGH data

Authors

BUDINSKÁ Eva GELNAROVÁ Eva SCHIMEK Michael G.

Year of publication 2009
Type Article in Periodical
Magazine / Source Bioinformatics
MU Faculty or unit

Faculty of Medicine

Citation
web http://bioinformatics.oxfordjournals.org/cgi/content/full/25/6/703
Field Genetics and molecular biology
Keywords MSMAD; microarray; arrayCGH; median absolute deviation; median smoothing
Description Genome analysis has become one of the most important tools for understanding the complex process of cancerogenesis. With increasing resolution of CGH arrays, the demand for computationally efficient algorithms arises, which are effective in the detection of aberrations even in very noisy data. We developed a rather simple, non-parametric technique of high computational efficiency for CGH array analysis that adopts a median absolute deviation concept for breakpoint detection, comprising median smoothing for pre-processing. The resulting algorithm has the potential to outperform any single smoothing approach as well as several recently proposed segmentation techniques. We show its performance through the application of simulated and real datasets in comparison to three other methods for array CGH analysis.

You are running an old browser version. We recommend updating your browser to its latest version.

More info