Publication details

Noncollinear magnetism in manganese nanostructures

Investor logo
Authors

ZELENÝ Martin ŠOB Mojmír HAFNER Jürgen

Year of publication 2009
Type Article in Periodical
Magazine / Source Physical Review B
MU Faculty or unit

Faculty of Science

Citation
Field Solid matter physics and magnetism
Keywords magnetism of nanostructures; nanowires; noncollinear magnetism; manganese
Description We present ab initio spin-density-functional calculations of the magnetic properties of Mn nanostructures with a geometry varying between a straight linear wire and a three-dimensional nanorod, including collinear and noncollinear, commensurate and incommensurate magnetic configurations. With decreasing tension along the axis of the nanostructure we find a series of transitions first from a straight to a zigzag wire, then to planar triangular or hexagonal stripes and further to a nanorod consisting of a periodic stacking of distorted octahedra. At local equilibrium all nanostructures are in a high-moment state, with absolute values of the local magnetic moments per atom varying between 2.96-3.79muB. Collinear and noncollinear magnetic structures are energetically nearly degenerate, if the geometric and magnetic degrees of freedom are relaxed simultaneously. Compression of the nanostructures leads to a decrease in the magnetic moments.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info