Informace o projektu
Advancing cryptanalytic methods through evolutionary computing
- Kód projektu
- GA16-08565S
- Období řešení
- 1/2016 - 12/2018
- Investor / Programový rámec / typ projektu
-
Grantová agentura ČR
- Standardní projekty
- Fakulta / Pracoviště MU
- Fakulta informatiky
- Spolupracující organizace
-
Vysoké učení technické v Brně
- Odpovědná osoba prof. Ing. Lukáš Sekanina, Ph.D.
Cryptographic algorithms usually go through elaborate testing by skilled experts who assert their overall security. We suggest to partly replace such extensive human labour by automating initial parts of such analyses. We base our approach on automatically generated “distinguishers” that show undesired statistical anomalies in an algorithm output. We design a distinguisher in the form of a multiple-output logic function, using evolutionary algorithms (genetic programming). We show that such approach leads to promising results comparable to the state-of-the-art testing. Our approach builds a distinguisher automatically and adaptively to the evaluated algorithm output. This opens up new possibilities for discovering those potential weaknesses in cryptographic algorithms that remained hidden from statistical tests and cryptanalyst’s sights. Our research will aim to answer two crucial questions of atmost importance when considering an algorithm security: (1) Is there anything wrong with a crypto algorithm? (2) What is wrong in the algorithm design?
Publikace
Počet publikací: 13
2019
-
BoolTest: The Fast Randomness Testing Strategy Based on Boolean Functions with Application to DES, 3-DES, MD5, MD6 and SHA-256
E-Business and Telecommunications 14th International Joint Conference, ICETE 2017, rok: 2019
-
Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, rok: 2019, ročník: 27, vydání: 12, DOI
-
Postcards from the Post-HTTP World: Amplification of HTTPS Vulnerabilities in the Web Ecosystem
Proceedings of the 40th IEEE Symposium on Security and Privacy, rok: 2019
2018
-
Evolving boolean functions for fast and efficient randomness testing
Proceedings of the Genetic and Evolutionary Computation Conference 2018, rok: 2018
-
Investigating results and performance of search and construction algorithms for word-based LFSRs, \sigma-LFSRs
Discrete Applied Mathematics, rok: 2018, ročník: 243, vydání: July, DOI
2017
-
A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components
CCS '17: Proceedings of the 24th ACM SIGSAC Conference on Computer and Communications Security, rok: 2017
-
Algorithm 970: Optimizing the NIST Statistical Test Suite and the Berlekamp-Massey Algorithm
ACM Transactions on Mathematical Software, rok: 2017, ročník: 43, vydání: 3, DOI
-
Measuring Popularity of Cryptographic Libraries in Internet-Wide Scans
Proceedings of the 33rd Annual Computer Security Applications Conference, rok: 2017
-
The Efficient Randomness Testing using Boolean Functions
Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, Madrid, Spain, July 24-26, 2017, rok: 2017
-
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, rok: 2017