Informace o projektu
First Closed-loop non-Invasive Seizure Prevention System
(RELIEVE)
- Kód projektu
- 101099481
- Období řešení
- 4/2023 - 3/2026
- Investor / Programový rámec / typ projektu
-
Evropská unie
- Horizont Evropa
- Evropská rada pro inovace (EIC)
- Fakulta / Pracoviště MU
- Středoevropský technologický institut
- Spolupracující organizace
-
Technische Universiteit Delft
- Odpovědná osoba Peyman Mohajerin Esfahani
- Odpovědná osoba Mehrdad Seirafi
- Odpovědná osoba Alessandra Finisguerra
- Odpovědná osoba Hans van Dijk
- Odpovědná osoba Roland Thijs
Project RELIEVE aims to construct a wearable, seizure predicting and seizure control device for patients with epilepsy. To this end, we will develop hardware and software solutions. The hardware solution comprises three main subsystems. First, a sensor subsystem measures brain signals online via a wearable patch recording the brain electrical activity (EEG). Second, an embedded subsystem that collects and preprocesses other relevant raw physiological data (such as heart rate, eye movements, skin conductance and motion), and implements the software solution for the prediction task. The software solution mainly aims to utilize (possibly by means of development/amendment) an artificial intelligence (AI) approach to detect a measure of seizure onset in brain signals, enabling the control subsystem to act in a timely fashion. In AI terminology, we will develop a classification approach that is robust against variations due to unknown brain dynamics, complicated seizure onset phenomenon, and highly noisy measurements. Once established, this predictive monitoring technology can be integrated with effective interventional approaches such as drug recommendation and neuromodulation to in real-time prevent predicted seizures from happening. The proposed solution aims to be reliable, practical and user-friendly while requiring minimal interactions with experts, representing a smart neuro technology. This technology predicts brain signal anomalies in real time with processing being done on ordinary wearable chipsets without the need to connect or transmit to third party devices or the cloud, guaranteeing system reliability, low battery consumption, and users’ privacy. The proposed solution will deliver a device that potentially pushes the boundary in the field of brain computer interfaces by bringing recent advancements in neurology, signal processing, statistical learning, optimization, and chip technology to the forefront in a unified manner.
Cíle udržitelného rozvoje
Masarykova univerzita se hlásí k cílům udržitelného rozvoje OSN, jejichž záměrem je do roku 2030 zlepšit podmínky a kvalitu života na naší planetě.