Informace o publikaci

Homogeneous orthocomplete effect algebras are covered by MV-algebras

Autoři

NIEDERLE Josef PASEKA Jan

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj FUZZY SETS AND SYSTEMS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1016/j.fss.2012.07.009
Obor Obecná matematika
Klíčová slova Homogeneous effect algebra; Orthocomplete effect algebra; Lattice effect algebra; Center; Atom; Sharp element; Meager element; Hypermeager element; Ultrameager element
Popis The aim of our paper is twofold. First, we thoroughly study the sets of meager and hypermeager elements. Second, we study a common generalization of orthocomplete and lattice effect algebras. We show that every block of an Archimedean homogeneous effect algebra satisfying this generalization is lattice ordered. Hence such effect algebras can be covered by ranges of observables. As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is lattice ordered. Therefore finite homogeneous effect algebras are covered by MV-algebras. (C) 2012 Elsevier B.V. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info