Informace o publikaci

ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS

Autoři

PASEKA Jan

Rok publikování 2012
Druh Článek v odborném periodiku
Časopis / Zdroj Reports on Mathematical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Obecná matematika
Klíčová slova non-classical logics; orthomodular lattices; effect algebras; generalized effect algebras; states; generalized states
Popis A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(D)(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riecanova and Zajac. Further, any operator generalized effect algebra G(D) (H) possesses an order determining set of generalized states.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info