Zde se nacházíte:
Informace o publikaci
Triple Representation Theorem for orthocomplete homogeneous effect algebras
Autoři | |
---|---|
Rok publikování | 2012 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Algebra Universalis |
Fakulta / Pracoviště MU | |
Citace | |
www | http://link.springer.com/article/10.1007%2Fs00012-012-0205-0 |
Doi | http://dx.doi.org/10.1007/s00012-012-0205-0 |
Obor | Obecná matematika |
Klíčová slova | homogeneous effect algebra; orthocomplete effect algebra; meager-orthocomplete effect algebra; lattice effect algebra; center; atom; sharp element; meager element; hypermeager element |
Přiložené soubory | |
Popis | The aim of our paper is twofold. First, we thoroughly study the set of meager elements M(E), the set of sharp elements S(E), and the center C(E) in the setting of meager-orthocomplete homogeneous effect algebras E. Second, we prove the Triple Representation Theorem for sharply dominating meager-orthocomplete homogeneous effect algebras, in particular orthocomplete homogeneous effect algebras. |