Informace o publikaci

Using nonlinear features for fetal heart rate classification

Autoři

SPILKA J. CHUDÁČEK V. KOUCKÝ M. LHOTSKÁ L. HUPTYCH M. JANKŮ Petr GEORGOULAS G. STYLIOS C.

Rok publikování 2012
Druh Článek v odborném periodiku
Časopis / Zdroj Biomedical Signal Processing and Control
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
Doi http://dx.doi.org/10.1016/j.bspc.2011.06.008
Obor Gynekologie a porodnictví
Klíčová slova Fetal heart rate; Cardiotocography; Nonlinear methods; Feature selection; Classification
Popis Fetal heart rate (FHR) is used to evaluate fetal well-being and enables clinicians to detect ongoing hypoxia during delivery. Routine clinical evaluation of intrapartum FHR is based on macroscopic morphological features visible to the naked eye. In this paper we evaluated conventional features and compared them to the nonlinear ones in the task of intrapartum FHR classification. The experiments were performed using a database of 217 FUR records with objective annotations, i.e. pH measurement. We have proven that the addition of nonlinear features improves accuracy of classification. The best classification results were achieved using a combination of conventional and nonlinear features with sensitivity of 73.4%, specificity of 76.3%, and F-measure of 71.9%. The best selected nonlinear features were: Lempel Ziv complexity, Sample entropy, and fractal dimension estimated by Higuchi method. Since the results of automatic signal evaluation are easily reproducible, the process of FHR evaluation can become more objective and may enable clinicians to focus on additional non-cardiotocography parameters influencing the fetus during delivery.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info