Informace o publikaci

Kernel matching pursuit for large datasets

Autoři

POPOVICI Vlad BENGIO S THIRAN JP

Rok publikování 2005
Druh Článek v odborném periodiku
Časopis / Zdroj PATTERN RECOGNITION
Citace
Doi http://dx.doi.org/10.1016/j.patcog.2005.01.021
Klíčová slova kernel matching pursuit; greedy algorithm; sparse classifier
Popis Kernel matching pursuit is a greedy algorithm for building an approximation of a discriminant function as a linear combination of some basis functions selected from a kernel-induced dictionary. Here we propose a modification of the kernel matching pursuit algorithm that aims at making the method practical for large datasets. Starting from an approximating algorithm, the weak greedy algorithm, we introduce a stochastic method for reducing the search space at each iteration. Then we study the implications of using an approximate algorithm and we show how one can control the trade-off between the accuracy and the need for resources. Finally, we present some experiments performed on a large dataset that support our approach and illustrate its applicability. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info