Informace o publikaci

Supervised nonparametric information theoretic classification

Autoři

ARCHAMBEAU C BUTZ T POPOVICI Vlad VERLEYSEN M THIRAN JP

Rok publikování 2004
Druh Článek v odborném periodiku
Citace
Doi http://dx.doi.org/10.1109/ICPR.2004.1334554
Popis In this paper supervised nonparametric information theoretic classification (ITC) is introduced. Its principle relies on the likelihood of a data sample of transmitting its class label to data points in its vicinity. ITCs learning rule is linked to the concept of information potential and the approach is validated on Ripley's data set. We show that ITC may outperform classical classification algorithms, such as probabilistic neural networks and support vector machines.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info