Informace o publikaci

A Key-Pose Similarity Algorithm for Motion Data Retrieval

Logo poskytovatele
Autoři

SEDMIDUBSKÝ Jan VALČÍK Jakub ZEZULA Pavel

Rok publikování 2013
Druh Článek ve sborníku
Konference Proceedings of 12th International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS 2013), LNCS 8192
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-02895-8_60
Obor Informatika
Klíčová slova motion capture data; motion retrieval; subsequence retrieval; similar sub-motions
Popis Analysis of human motion data is an important task in many research fields such as sports, medicine, security, and computer animation. In order to fully exploit motion databases for further processing, effective and efficient retrieval methods are needed. However, such task is difficult primarily due to complex spatio-temporal variances of individual human motions and the rapidly increasing volume of motion data. In this paper, we propose a universal content-based subsequence retrieval algorithm for indexing and searching motion data. The algorithm is able to examine database motions and locate all their sub-motions that are similar to a query motion example. We illustrate the algorithm usability by indexing motion features in form of joint-angle rotations extracted from a real-life 68-minute human motion database. We analyse the algorithm time complexity and evaluate retrieval effectiveness by comparing the search results against user-defined ground truth. The algorithm is also incorporated in an online web application facilitating query definition and visualization of search results.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info